

Agent Goal Management using Goal Operations

Sravya Kondrakunta

Department of Computer Science & Engineering Wright State University, Dayton, OH http://www.airnd.org/sravya/

NSF GRANT #1849131 ONR GRANT #N00014-18-1-2009

- > Intelligent Autonomous Agents
- > Agent Selecting Goal Operations
- > The Problem Domains
- Empirical Results
- Conclusion

Intelligent Autonomous Agents

A **Cognitive System** that combines perception, actuation, and communication to operate *robustly* in the real world

Capabilities:

- Perceive: Gather information about the real world.
- Think: Process the percepts to achieve and generate thoughts/goals.
- Act: Perform actions in the real-world using controls.
- Communicate: Explain thought process to other agents.

Issues:

- Unexpected events
- Partial Observability

Examples:

- Self-driving cars
- Humanoid robots.

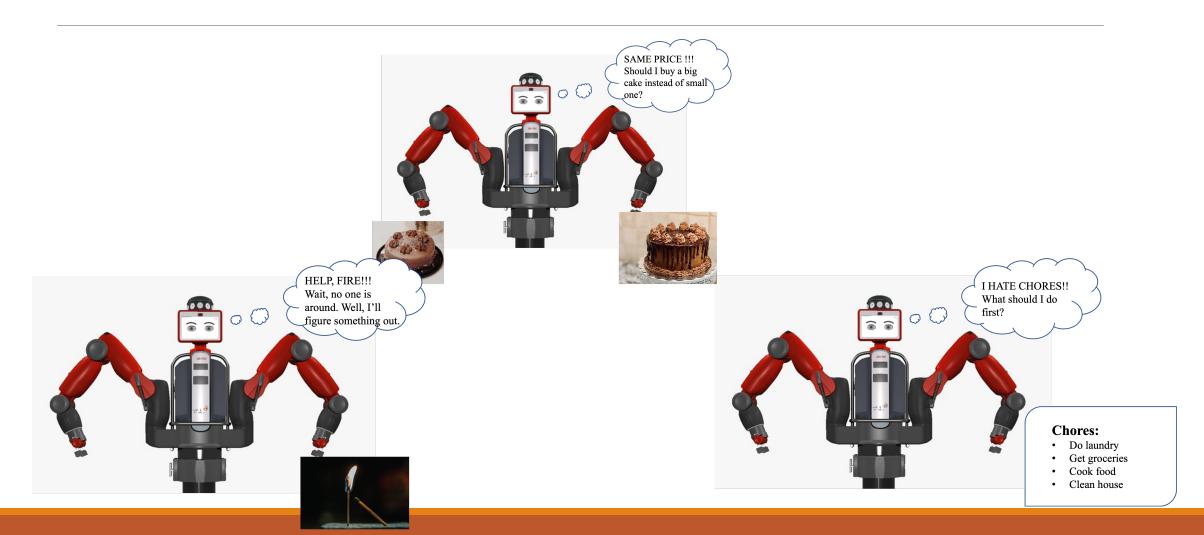
Simon

Waymo

- > Intelligent Autonomous Agents
- > Agent Selecting Goal Operations
- > The Problem Domains
- Empirical Results
- Conclusion

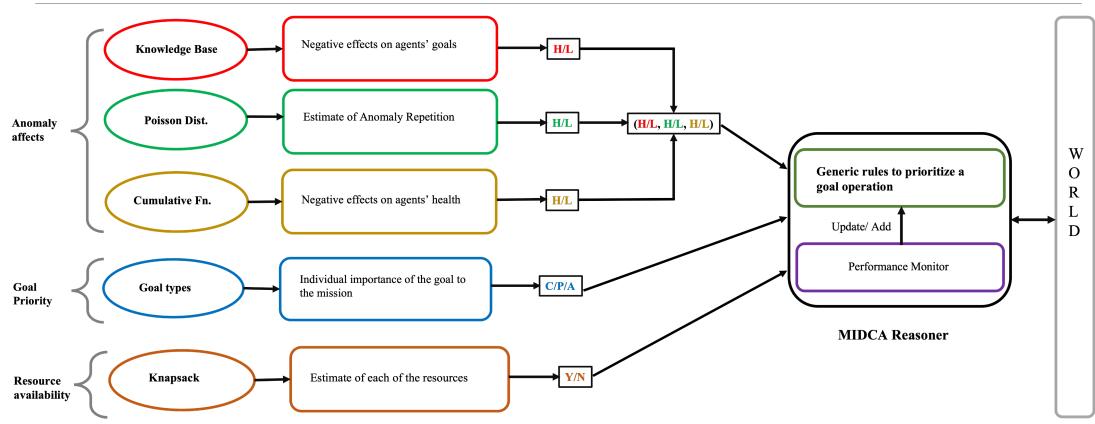
Agent Selecting Goal Operations

A Framework Focused on Reasoning about Agents' Goals.


Goal Operations

Goal Selection: Select one appropriate goal among multiple goals. I HATE CHORES!! Goal Change: Change a goal to a similar one. What should I do first? Goal Formulation: Create a new goal. SAME PRICE !!! HELP, FIRE!!! Should I buy a big Wait, no one is cake instead of small figure something out **Chores:** Do laundry Get groceries Cook food Clean house

- Cox, M., Dannenhauer, D., **Sunta, S.** (2017, February). Goal operations for cognitive systems. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 31(1), 4385-4391. AAAI Press.
- Kondrakunta, S., Gogineni, V. R., Molineaux, M., & Cox, M. T. (In Press). Problem recognition, explanation and goal formulation. In *Fifth International Conference on Applied Cognitive Computing (ACC)*. Springer.
- Kondrakunta, S., & Cox, M. T. (In Press). Autonomous Goal Selection Operations for Agent-Based Architectures. In *Fifth International Conference on Applied Cognitive Computing (ACC)*. Springer.

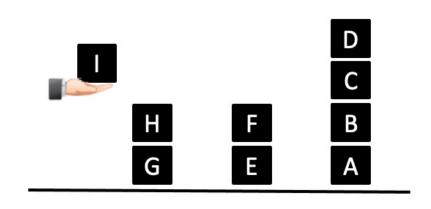


Multiple Goal Operations co-occur

The Rational Selection of Goal Operations

• Kondrakunta, S., Gogineni, V. R., Cox, M. T., Coleman, D., Tan, X., Lin, T., Hou, M., Zhang, F., McQuarrie, F., & Edwards, C. (in press). The Rational Selection of Goal Operations and the Integration of Search Strategies with Goal-Driven Marine Autonomy. In the Ninth Annual Conference on Advances in Cognitive Systems. Cognitive Systems Foundation.

- > Intelligent Autonomous Agents
- > Agent Selecting Goal Operations
- > The Problem Domains
- Empirical Results
- Conclusion



The Problem Domains

The Construction Domain and The Marine Survey Domain.

The Construction Domain

GOALS and PROBLEMS

Construct towers

* Arsonist

***** Thief

The Marine Survey Domain

Sanctuary Coordinates

Southwest: 31°21.764'N (31.362732°N) 80°55.272'W (80.921200°W)

Northwest: 31°25.264'N (31.421064°N)

80°55.272'W (80.921200°W)

Northeast: 31°25.264'N (31.421064°N)

80°49.689'W (80.828145°W)

Southeast: 31°21.764'N (31.362732°N) 80°49.689'W (80.828145°W)

- Long missions (one two months)
- Minimum communication

Goals and Problems

GOALS

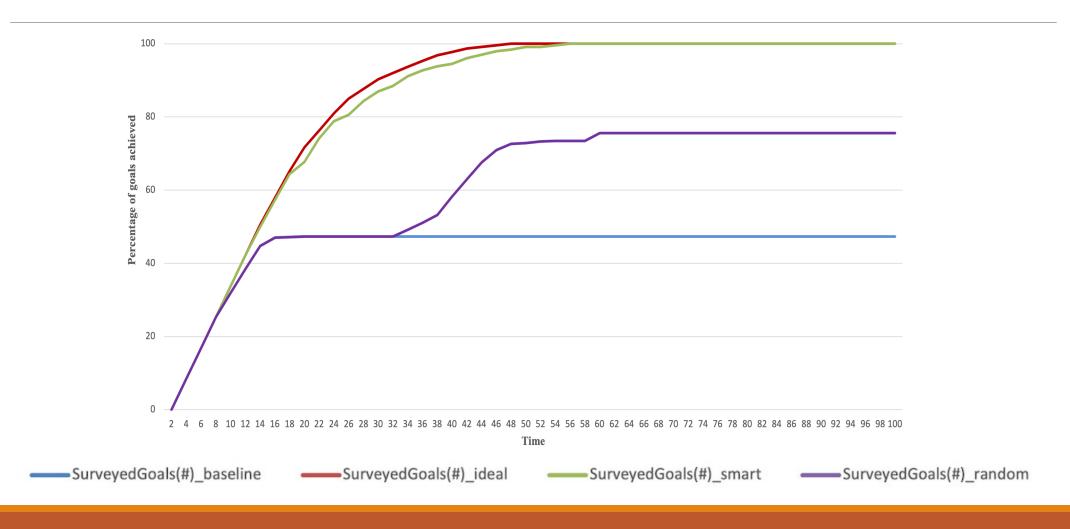
- Gather measurements
 - Temperature
 - Salinity
 - Pressure
- Discover hot spots
- * Track fish

PROBLEMS

- Remora attacks
- Blowouts
- Obstacles
- Shark attacks

- > Intelligent Autonomous Agents
- > Agent Selecting Goal Operations
- > The Problem Domains
- Empirical Results
- Conclusion

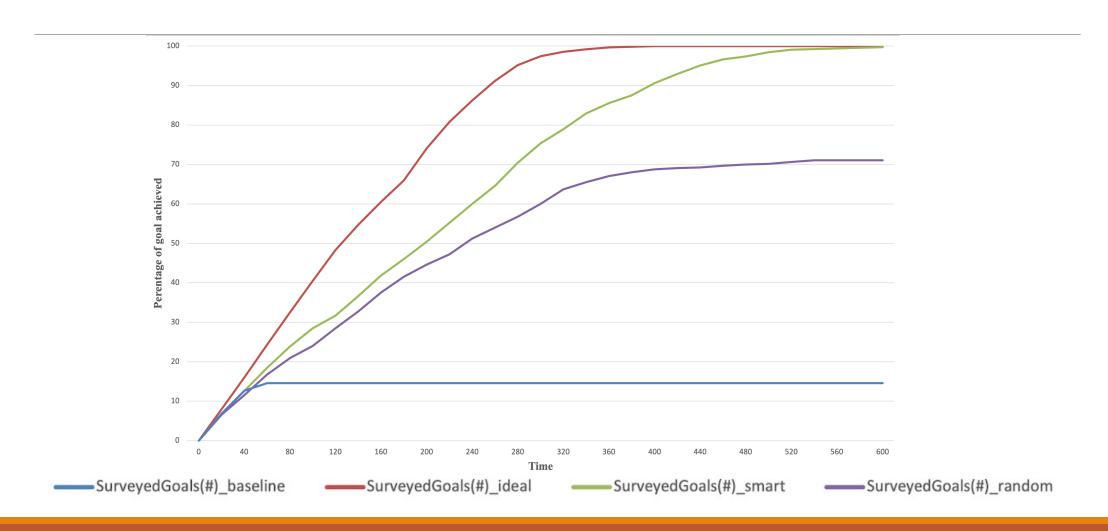
14



Experimental Setup: Construction Domain

- * Assumption: 100 blocks and mortar.
- Agent begins construction on 30 different problem sets.
- * We repeat the trials two times with two different seeds.
- * Anomalies: Arsonist and Thief.
- Performance metric: Performance of goals achieved.
- * Agents for comparison:
 - * Baseline: Only achieves given goals
 - Random: Chooses goal operations in random
 - Smart: Uses the developed algorithm
 - Ideal: Agent working in an ideal environment.

Empirical Results: Construction Domain



Experimental Setup: Marine Survey Domain

- Assumption: 1000 Fish tags
- Grace begins surveying with 100 initial starting locations, we have 100 trials.
- * We repeat the 100 trials 3 times with three different seeds. Therefore, the results obtained are for 300 trials.
- Anomalies: Remora attacks, blockades and flow.
- Performance metric: Performance of goals achieved.
- Agents for comparison:
 - Baseline: Only achieves given goals
 - Random: Chooses goal operations in random
 - Smart: Uses the developed algorithm
 - Ideal: Agent working in an ideal environment.

Empirical Results: Marine Survey Domain

18

- > Intelligent Autonomous Agents
- > Agent Selecting Goal Operations
- > The Problem Domains
- > Empirical Results
- Conclusion

Conclusion

- **Open-source Code available at https://github.com/COLAB2/midca**
- Much still in preliminary stages, but exciting results are emerging
- * Combining simulation studies and fielded trial promises advances in intelligent autonomous agents