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Abstract 
Cognitive control is often conceptualized as an opposite term to automaticity. Automaticity is related 
to the ability of a cognitive system to execute tasks with minimal effort using a streamlined well-
practiced behavior. Cognitive control is a complement to automatic behavior when doing effortful 
biasing on unpracticed goal-directed behaviors. The objective of this paper is to present a first 
computational implementation of a cognitive control mechanism in a GDA-Based Tutor Module of 
an ITS (Intelligent Tutoring System) for the Personalization of Pedagogic Strategies using the 
theoretical approach of the theory of Koechlin & Summerfield. An overview of these authors' 
conceptual model of cognitive control is provided and how the quantitative aspect of this theory was 
implemented in the tutor module. This mechanism enables the ITS tutor module to incorporate 
additional techniques for responding to unforeseen situations. Moreover, an illustrative example 
about an ITS that facilitates healthcare protocols teachings for the early diagnosis of gestational and 
congenital syphilis is described. 
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1.  Introduction 
Intelligent Tutoring Systems (ITS) provide a dynamic learning environment promoted by 
mechanisms of individualized teaching and feedback (Almurshidi et al., 2016). One of the 
main challenges in designing an ITS is instructional planning because planning plays a 
vital role in this system (Gómez et al., 2021). (Gomez et al., 2018; Gómez et al., 2021) 
state that the goal of an ITS is dynamically selecting and adapting these pedagogical 
strategies to the student's learning styles when inferring the pedagogical strategies based 
on the learner's performance and needs. This specific type of ITS presents some anomalies 
related to failures when pedagogical strategies are selected or loaded. For that reason, the 
amount and complexity of mechanisms that structure the personalization and adaptation of 
pedagogical strategies make this process a time-consuming and challenging task. Looking 
for necessary actions to reach a goal is one of the objectives of Planning (Dannenhauer & 
Muñoz-Avila, 2015). Also, triggering expectations, detecting discrepancies, and executing 
actions for achieving goals in the reasoning loop are necessary conditions in planning an 
autonomous system (Molineaux et al., 2012). 
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Goal-Driven Autonomy (GDA) is a goal reasoning method focused on formulating new 
goals through discrepancies explanation which enables the system to be more self-
sufficient (Molineaux et al., 2010). Autonomous systems with this type of ability enable 
efficient self-regulation and self-control (Cox, 2013). Metacognition is one of the principal 
characteristics of goal reasoning (Samsonovich, 2014). Self-control makes part of the 
metacognitive abilities as self-regulation of an autonomous system (Samsonovich, 2012). 
(Anderson & Oates, 2007) present self-control as a metacognitive skill in intelligent 
systems that allow them to know when something is amiss, to evaluate and solve anomalies. 
(Coward & Sun, 2004) stated that self-control includes selecting reasoning methods, 
controlling the direction of reasoning, and assesing its progress. Also, (Sun & Mathews, 
2012) affirms that self-control can include setting goals in processes of automatic responses 
or drives, setting essential parameters, interrupting, and changing ongoing processes. 
Cognitive control is often conceptualized as an opposite term to automaticity. Automaticity 
is related to the ability of a cognitive system to execute tasks with minimal effort using a 
streamlined well-practiced behavior. Cognitive control is a complement to automatic 
behavior for effortful biasing on unpracticed goal-directed behaviors. At this point, 
cognitive control can be presented as a complement of GDA mechanisms when the system 
faces novel situations or contexts that automatic behaviors of the system cannot address. 
Self-control has had many computational implementations aiming to give autonomy to 
intelligent systems (Caro et al., 2018; Dannenhauer et al., 2014; Grislin-Le Strugeon et al., 
2005; Oh et al., 2021; Samsonovich et al., 2008; Sun et al., 2006, p., 2021), as well as 
theoretical approaches inspired from the human brain (Koechlin & Summerfield, 2007; 
O’Reilly, 2006; O’Reilly et al., 1999, 2010; Pezzulo & Castelfranchi, 2009; Verguts, 
2017). However, current works in ITS that incorporate components of reasoning or 
techniques of GDA-based planning do not present mechanisms of self-control of 
pedagogical strategies used by the system. In previous research (Gomez et.al., 2020), we 
created the first ITS that used GDA mechanisms in its tutor module to personalize 
pedagogical strategies. However, the system lacked autonomy processes that allowed to 
increase its efficiency of selecting select a pedagogical strategy considering learner 
performance and preferences. Thus, self-control mechanisms are necessary for decreasing 
the system’s automaticity when it creates its own goals. 
(Koechlin & Summerfield, 2007) presents a theoretical approach of executive control as 
simple routines for selecting actions. The approach measures the amount of information 
required for each process using the statements of information theory. We implement the 
approach computationally with a goal-based system using the GDA mechanism. For this 
reason, the objective of this paper is to present a model of self-control for a GDA-Based 
Tutor Module of an ITS for the Personalization of Pedagogic Strategies using the 
theoretical approaches of (Koechlin & Summerfield, 2007). This paper is structured as 
follows: In the second chapter, we explain an overview of models of cognitive control. The 
next chapter shows the model of the self-control mechanism of GDA-based Tutor Module 
for the Personalized Adaptation of Pedagogic Strategies in ITS. The fourth chapter 
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describes the Illustrative Example of the model. Finally, the conclusions of this study are 
presented. 

2.  Models of cognitive control  

Cognitive control refers to a series of mechanisms to optimize cognitive processes oriented 
towards resolving complex situations (Roberds, 2015). These processes comprise various 
components, including working memory, such as the capacity of guidance and adequacy 
of attentional resources, inhibition of inappropriate responses in certain circumstances, and 
monitoring behavior of the organism's motivational and emotional states (Buehler, 2018). 
There are several formal theoretical investigations in the study of cognitive control useful 
for designing computational models that can simulate mechanisms of the human brain for 
executing this type of control. Many theoretical approaches attempt to explain the 
functioning of human cognitive control. (Shimamura, 2002), in his dynamic filter theory, 
states that four aspects of executive control characterize the information filtering process: 
selection, maintenance, updating, and redirection. According to the theory of cognitive 
complexity and control of (Zelazo et al., 1997), the development of executive control 
functions during childhood implies the appearance of a series of cognitive capacities that 
are necessary for the child to maintain, manipulate and act on the information self-regulate 
their behavior, act in a reflective and not impulsive manner, and adapt their behavior to 
changes that may occur in the environment. (Stuss et al., 1995) proposed a model on how 
the frontal lobe relationships operate that serve to control the functions of more basic 
schemas. These authors define a scheme as a network of interconnected neurons that can 
be activated by sensory inputs, by other schemes, or by the executive control system. 
(Christoff et al., 2003), in his theory, presents reasoning processes as information 
manipulation mechanisms at different levels of complexity. The proposal by (Koechlin & 
Summerfield, 2007) describes the anterior-posterior organization of the lateral prefrontal 
cortex (CPFL) in cognitive control, allowing an important advance in the understanding of 
the neuroanatomical substrate of executive functioning. The model postulates that the 
CPFL is organized as a cascade of representations extending from the premotor cortex to 
the most anterior regions of the CPFL. Based on information theory, this approach   
determines the total amount of information 𝐻(𝑎) required for selecting an action through 
the following equation: 𝐻(𝑎) = 	−𝑙𝑜𝑔!𝑝(𝑎) where 𝑝(𝑎) is the relative frequency or 
probability that the action can be selected. The processing of stimulus is given by the 
mutual information 𝐼(𝑠, 𝑎) using the following formula: 𝐼(𝑠, 𝑎) = 𝑙𝑜𝑔![𝑝(𝑠, 𝑎)/𝑝(𝑎)𝑝(𝑠)] 
This mutual information is referred as sensorimotor or reactive control. This same author 
also considers the following quantity, usually referred to as the conditional information: 
𝑄(𝑠) = 𝐻(𝑎) − 𝐼(𝑠, 𝑎) = −𝑙𝑜𝑔!𝑝(𝑠) This quantity 𝑄(𝑠) corresponds to the cognitive 
control. Furthermore, total information H(a) for selection a is the sum of sensorimotor 
control	𝐼(𝑠, 𝑎) and cognitive control 𝑄(𝑠) (Figure 1). A key feature of cognitive control is 
that it can be similarly broken down into two further terms, as follows: 𝑄(𝑠) = 𝐼(𝑠) +
𝑄(𝑠, 𝑐). The first term represents contextual control and the second term is the remaining 
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information of past events. This study will emphasize Koechlin's theory of differential axes 
and his mathematical model of quantification of self-control. 

3.  Model of Self-control for a GDA-based Tutor Module of an ITS 
One of the most important modules of an ITS is the tutor module (Rongmei & Lingling, 
2009). Pedagogical model of the tutor module of an ITS executes the process of selection 
of the most adequate pedagogical strategy to facilitate the learning of students (da Silva, 
2012). An ITS with capabilities of personalizing its pedagogical strategies can adapt its 
instructional plans in a personalized way considering the performance and interests of the 
learner. This process takes into account pedagogical theories, teaching strategies and 
pedagogical knowledge rules stored in the pedagogical model (Caro & Jiménez, 2014). 
Also, the pedagogical model contains instructional plans as resources of learning lessons 
generated by a GDA controller to promote achievement learner’ learning objectives 
(Gómez et al., 2021).  

In a previous research, (Gómez et al., 2021) presented a GDA controller that facilitates 
the selection of new goals in each learning lesson of the ITS. The ITS presents the following 
structural characteristics: An initial goal 𝑔"  given to the Planner by the Metacore Package. 
This Metacore Package links the components of the system through information traces. 
The Planner using Domain 𝐷, the problem 𝑃, and 𝑔" to generate a plan, 𝜋 =	<
𝑎#	, 𝑎#%&. . . 𝑎' >,	where 𝑎# is an action that is stored in the Metacore Package to be later 
executed by the ITS Graphic User Interface. At this moment, the Planner generates 
expectations, 𝑥, which are given to GDA Controller Discrepancy Detector.  

This Discrepancy Detector uses an ontology to compare ITS world facts and inferences 
from these facts to the expectations 𝑥. The ITS world current state, 𝑆, is a set of facts 
𝑓,which are represented as triples 𝑓 =< 𝑆(,𝐶**, 𝑅* > where 𝑅* is a Selected Resource in a 
given time, 𝑆(	 and 𝐶** will be explained later. This matching process allows us to detect if 
exists a discrepancy between the current state and the expected state. Thus, in this research, 
an expectation 𝑥 consists of in the activated resource and completed activity (the 
completion of an activity consists of the achievement of an expected minimum score). A 
discrepancy 𝑑, is the contradiction of the previously described (Deactivate resource and 
uncompleted activity).  

The Explanation Generator gives an explanation for the detected discrepancy. This 
GDA component generates a hypothesis as explanation 𝑒 that describes 𝑑, taking into 
account an ITS world current state, 𝑆 and a discrepancy 𝑑.  

The Goal Formulator uses this explanation to build a new goal 𝑔' to pursue, with 𝑔' ∈
𝐺(,	where 𝐺(represents the pending goals of the ITS GDA Controller (the ITS first pending 
goal is the initial goal 𝑔"). This goal 𝑔' constitutes from the response to an explanation 𝑒 
and a discrepancy 𝑑 in the ITS world current state 𝑆. 

Then the Goal Manager update 𝐺( adding 𝑔' which may also ensure other edits (e.g., 
to remove and to modify goals). The Goal Manager will select 𝑔' and turn it into 𝑔+ to be 
given to the Planner. 
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In this study, a self-control mechanism is proposed to improve this selection process so that 
it can be less automatic. It can be regulated considering the performance and interests of 
the students determined by the interaction history with the system.  In a previous research, 
(Gómez et al., 2021) presented a GDA controller that facilitates the selection of new goals 
in each learning lesson of the ITS. Thus, just before creating new goals using the GDA 
controller, the ITS will have the possibility of self-regulating this process considering 
previous episodes of performance and interest of the learner. 
According to the model proposed by (Koechlin & Summerfield, 2007), self-control can be 
fractioned in a temporal framing of actions and events involved in the selection process. In 
this way, considering a stimulus s which in the model proposed is the Student Profile 𝑆( =
	< 𝑆# 	, 𝑆*, , 𝑆- , 𝑆*

( > which is a 4-tuple where 𝑆# 	is the student identifier, 𝑆*, is the Student 
Learning Style, 𝑆- is the Pedagogical Dimension assigned to the Student by the system and 
𝑆*
( is the Pedagogical Strategy assigned to the Student by the system. The initial goal of 

the ITS 𝑔" is received by the Planner from the Metacore Package. Also, Planner receives 
vital information for generate a plan constituted by 𝐷 and 𝑃. Both 𝑆(  and 𝐶** make part of 
𝐷 and 𝐶** =< 𝐶# 	, 𝐶,+ 	, 𝐶,* > it is the selected course by the student where 𝐶# 	is the Course 
ID, 𝐶,+ is the Current Course Lesson and the 𝐶,* is the structure of the Current Course lesson. 
The Planner generates a plan, 𝜋 =	< 𝑎#	, 𝑎#%&. . . 𝑎' >. Where 𝑎# is an action that is stored 
in the Metacore Package to be later executed by the ITS Graphic User Interface. This plan 
𝜋 comprises the principal action regulated by the self-control mechanism.  
Algorithm 1 shows the main actions of self-control of ITS. Lines 1 and 2 specify actions 
and stimulus managed by the self-control mechanism. Reactive functions of the system. 
 
Algorithm 1 The SelectAction procedure describes the reactive control of the system. Also, the cognitive 
control procedure shows the code that uses the system for processing the cognitive control conditions. 

1. global  𝐾! = [ ]  𝐼" = [ ]   Þ The Knowledge base contains all plans created by the system 
2. procedure SelectAction (𝑆#)  

3. i ¬ 0  

4. While i < EOF (𝐾!) Þ All case base is examined 
5. 					𝑅$ 	← 𝑙𝑜𝑔%+𝑝(𝑆#, 𝐾![𝑖]. 𝜋)/𝑝(𝐾![𝑖]. 𝜋)𝑝(𝑆#)6 Þ Reactive control	between 𝑆# and 𝜋 is inquired 

6.   			𝐼"[𝑖] 	← 𝑅$  

7.      i++  

8.  o ¬ pos (max (𝐼"))  

9.  𝑟𝑒𝑡𝑢𝑟𝑛(𝐾![𝑜]. 𝜋) Þ The plan with the highest mutual information is selected 
10.   

11. procedure CognitiveControl (𝛿, 𝑠&, ℎ, 𝑆#) Þ	𝛿 is performance, 𝑠!	is score, ℎ is interaction history  
12. 						𝑡 ← SelectAction (𝑆#) Þ Reactive behavior of the ITS is invoked  

14. 					𝑄$ ← −𝑙𝑜𝑔%𝑝	(𝑡) − max (𝐼") Þ Key feature of cognitive control: contextual control plus 
remaining information conveyed by past events. 15. 					𝑄' ← 	 		𝑄$ + 𝑝(𝛿) + 𝑝(𝑠&)+ p (h) 

16.  𝑟𝑒𝑡𝑢𝑟𝑛 (𝑄') 
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4.  Illustrative example 

The previously described mechanism of cognitive control was implemented in an ITS 
called Fichas y Protocolos en Salud. This ITS is used in the nursing program of the 
Universidad de Córdoba-Colombia for the teaching process of healthcare protocols for the 
early diagnosis of gestational and congenital syphilis.  

Figure 1 presents a screenshot of the lesson plan presented to a student according to his 
profile using the automatic response mechanisms of the system when the learner is logged 
in the system for the first time. This information, solicited by the planner, is complemented 
by intern codification in PDDL language used to build the domain and the problem in the 
reasoning process of the ITS. In this way, four topics are presented to the student related to 
the course Maternal and child health. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. Lesson plan created with automatic mechanisms of the system. 

 
Figure 2 presents the result of the cognitive control mechanism in the ITS reasoning 

process. The pedagogical strategies selection process has been developed considering the 
performance and other control conditions. These control conditions are related to loading 
and selection of resources. Thus, the resources are shown to the student for the third time. 
At that moment, the system is waiting for the response of the student to use the GDA 
mechanism. Finally, the data are saved in the trace of the student. 
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Figure 2. Cognitive control mechanism in the ITS reasoning process presenting resources to the 
student. 

5.  Conclusions and Future Work 

This paper presented the computational implementation of a theoretical approach of control 
cognitive in a GDA-based tutor module of an ITS. The study allowed the integration of the 
cognitive control mechanisms into a GDA controller component in the ITS tutor module 
packages. The GDA controller enables the tutor module to determine when new goals 
should be selected and decide which goals should be pursued at each learning lesson. The 
GDA controller enables the tutor module to determine when new goals should be selected, 
and to decide which goals should be pursued at each learning lesson. For this, the tutor 
module must know the student profile, and courses in which the student is enrolled and 
associated with the resources of these courses. Also, GDA controller enables the ITS tutor 
module to incorporate additional techniques for responding to unforeseen situations. 
However, the system presented anomalies related to failures when pedagogical strategies 
were selected or loaded. The cognitive control mechanism improves this process, adding 
autonomy to the system's decisions when choosing pedagogical strategies. This mechanism 
facilitated the selection of pedagogical strategies considering the student’s performance, 
score, and interaction history. An illustrative example regarding an ITS facilitates the 
healthcare protocols teachings for the early diagnosis of gestational and congenital syphilis. 
This ITS will allow solving the existing problems in learning the protocols of early 
detection of the infection, in the timely identification of the contacts, to improve the 
efficiency in the evaluation time of medical consultations and the ignorance of public 
policy by part of health professionals. 
The ITS Fichas y Protocolos en Salud has a limited set of algorithms of decision. In future 
research, we will develop a cognitive system that will use deep learning algorithms to 
improve this process of decision-making. Also, this cognitive system will have 
introspective monitoring procedures that will significantly improve the system's 
performance.   
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