
Proceedings of the Ninth Goal Reasoning Workshop Submitted 10/2021; published 11/2021

© 2021 Goal Reasoning Workshop. All rights reserved. 1

A Goal Reasoning Model for Autonomous Underwater Vehicles

Mark A. Wilson MARK.WILSON@NRL.NAVY.MIL
David W. Aha DAVID.AHA@NRL.NAVY.MIL
Navy Center for Applied Research in AI, Code 5510

Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA

Abstract

In previous work we integrated goal reasoning (GR) models onboard autonomous underwater

vehicles (AUVs) and demonstrated their ability to interact with AUV control systems and direct

AUVs to accomplish different goals based on sensor feedback from the environment. However,

those GR models did not employ cost estimates when estimating goal utility. Further, those models

use reactive, single-goal selection and did not consider the impact of altering short-term goals on

the long-term mission success. In this paper, we address these needs by developing a new GR model

for use in embodied agents, extend it to coordinate multi-vehicle teams, and describe experiments

that assess the multiagent model efficacy in AUV scenarios. Our preliminary results with four goal

sequence optimizers, and their comparison with two baselines, do not show simultaneous advantages

in reward attained and risk incurred, although one GR method incurred lower risk than both

baselines.

1. Introduction

To be truly autonomous, intelligent agents should respond robustly to unexpected situations, with

minimal guidance from human operators. This capability is particularly advantageous for

autonomous underwater vehicles (AUVs), which may have limited or no communication with

operators for long periods of time.

Effective human operators may respond to unexpected situations by altering an agent’s goals,

such as when a new goal is afforded by changing circumstances, or when a current goal becomes

useless or unsatisfiable. Enabling agents to dynamically (1) deliberate on the utility of their own

goals and (2) alter their goals accordingly can increase their autonomy, reliability, and

trustworthiness. This can be achieved by using goal reasoning (GR) models for agent control (Aha,

2018). A GR model can improve an agent’s ability to control AUVs in long-term autonomous

missions.

In previous work (Wilson et al., 2018), we described an integration of a GR model with the

MOOS-IvP vehicle autonomy framework (Benjamin et al., 2010) and demonstrated its ability to

direct AUVs. Our previous GR model extended an automated planning agent; some other GR

models adopt a similar structure (e.g., Klenk et al., 2013), or one of higher-level reasoning cycles

supervising automated planning (e.g., Oxenham and Green 2017). Although useful for solving

discrete planning problems, our previous planning model was not well-suited to represent complex,

dynamic spatiotemporal environments such as those encountered by AUVs. In particular,

M.A. WILSON AND D.W. AHA

2

representing temporal change of multiple interdependent variables can become increasingly

burdensome or even infeasible as the complexity of the represented system increases. This can

undermine the agent’s ability to reason about complex, dynamic elements of its environment.

For instance, an AUV might be assigned a mission to survey several regions in an area for

possible mines. The AUV should be able to decide the order for surveying those regions and react

intelligently to an intrusion by another vessel during its mission, taking into account considerations

such as:

• Is the AUV in danger of colliding with the other vessel? If so, how should it alter its mission?

• Does the AUV need to refine its estimate of the vessel’s position and velocity?

• Should the AUV attempt to gain more information about the other vessel (e.g., by classifying

its type)?

• How much additional risk (e.g., of collision) does the AUV incur by maneuvering to gain more

information about the vessel?

These factors are time-dependent and involve multiple interdependent spatial variables related to

the maneuvering of the AUV and other vessels. Although some automated planning models (e.g.,

Fox & Long 2006) include the ability to reason about multiple time-dependent continuous

processes, they may require integration with specialized solvers to efficiently compute values that

express a complicated interdependence, such as the maximal risk incurred by executing a particular

maneuver while a surface vessel proceeds from position 𝑥, 𝑦 with speed 𝑠 and heading ℎ. Our

previous model did not consider, or even compute, accurate cost estimates for executing its plans

when selecting goals. We also found that it could be burdensome for a designer to express these

factors in a planning language.

Moreover, our previous GR model was reactive and myopic in its goal selection strategy; it

selected an immediate goal to pursue without assessing the long-term impact on future mission

goals. For instance, the AUV described above will need to know, if it decides to refine its

knowledge of the other vessel, whether it will later have sufficient power to complete its survey

mission.

 In this paper, we introduce a GR model that evaluates the utility of long-term sequences of

goals based on a spatiotemporal problem model, directly integrating route planning over spatial

components of the embodied GR problem and treating goal sequence selection as an instance of

the Orienteering Problem (OP) (Golden et al., 1987). We also present an extension of this model to

a multiagent problem and extend goal sequence optimizers to incorporate precedence constraints

between goals. Finally, we describe an experiment to assess our model’s ability to control AUVs.

Our results indicate that it is possible for some optimization techniques to make informed decisions

that trade preferential cost reduction against reward maximization in a real-time underwater

environment.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

3

2. Related Work

Our work pertains to the application of GR in underwater environments, where the agent controls

multiple agents (one per AUV) using a method for goal selection that, to our knowledge, has not

previously been investigated with GR agents.

Substantial work has been published on maritime applications of GR agents. Klenk et al. (2013)

describe ARTUE’s use of rules for detecting expectation violations during simulated AUV control,

which inspired some of our earlier work (e.g., Wilson et al., 2014; 2016). More recently we reported

on in-water tests of GR agents installed onboard AUVs (Wilson et al., 2018). However, we have

not previously addressed the problem of controlling multiple vehicles, nor addressed the in-situ

problem of selecting and sequencing a set of goals under time constraints.

Nelson and Etemadyrad (2018) use GR techniques to improve the performance of an active sonar

system by dynamically tuning its transmitter and receiver parameters. In simulated studies, they

assessed GR’s ability to decide which direction to steer the system’s beam, and reported improved

target location estimation and tracking. In our navigation task, we instead address the

oversubscription problem (i.e., where resource or time limitations prevent all goals from being

achieved) (Smith, 2004) and select a set of goals rather than a single next goal to pursue.

In three more recent examples involving the GR control of simulated AUVs, Bride et al. (2021)

describe GRAVITAS, an agent that uses model checking to assess whether jointly selected goals

conflict, in which case it generates deconfliction plans. Next, Vilchis-Medina et al. (2021) describe

a non-monotonic reasoning application of GR where goals involve conducting transects to film

fish. Finally, Kondrakunta et al.’s (2018) agent distinguishes whether an expectation violation

(found during an underwater mine-clearing mission) threatens its current goal and, if so, uses

explanation patterns to formulate alternative goals. We instead focus on selecting and sequencing

a subset of goals (so as to maximize rewards and minimize costs), where not all goals can be

achieved within a given time budget, and goals cannot conflict.

The T-REX architecture (Rajan et al., 2012) is a framework for robotic control that has been

applied on AUVs to adaptively execute scientific missions. T-REX distributes responsibilities for

planning and control among a set of reactors that monitor state variables and dispatch updates to

modeled variables. T-REX aims to provide concurrent control among many reactors and thus

provides a high degree of flexibility coupled with a model for consistent hierarchical variable

dispatch, whereas our work employs a monolithic goal reasoner responsible for monitoring

execution, selecting mission goals, and dispatching plans. T-REX models variable updates as

representing reactor-level goals that propagate from one reactor to another, while we focus on

mission-level goals. Finally, T-REX employs a planning model based on satisfying timeline

constraints (Smith et al., 2008), whereas our planning model is based on modeling time and

distance, and satisfies timeline constraints by default.

Several research efforts have addressed the problem of multiagent goal reasoning. Jaidee et al.

(2013) describe a case-based GR algorithm for playing a real-time strategy game. Their approach

employs a team of cooperating agents, where each learns a control policy for bots of one class (e.g.,

archers, knights, or peasants). Roberts et al. (2015) instead describe a goal refinement approach for

deploying a set of agents in a simulated disaster relief mission. Both efforts use a centralized

controller that selects and assigns a sequence of goals during a scenario, without reference to time

M.A. WILSON AND D.W. AHA

4

or resource constraints. In contrast, we focus on the problem of selecting and sequencing a set of

goals under time constraints.

Golpayegani and Clarke (2016) describe a model in which a community of agents self-organize

to form dynamic coalitions, within which agents collaborate to achieve a shared goal while also

pursuing a set of individual desires. While these collaborations are identified in situ, this contrasts

with the dynamic problem we address, which assumes a fixed team structure in which goals are

simultaneously selected, sequenced, and assigned to team members to optimize rewards.

Hofmann et al. (2019; 2021) describe their sophisticated approach that won the 2019 RoboCup

Logistics League championship, where a set of robots is tasked to assemble products for

dynamically generated orders. Their CLIPS Executive performs high-level decision making for this

oversubscription task. It implements a variant of the goal lifecycle (Roberts et al., 2015), where

agents share partial world models, goal achievement requires resources whose access is constrained

(e.g., due to use by another team’s robots), and lockout mechanisms are used to prevent conflicts.

Their control model is distributed, and goals are structured in goal trees. As in our work, their

multiagent task involves dynamic goal selection and leverages a pre-existing plan library. However,

their agents select a single goal to pursue next, whereas our problem involves selecting and

sequencing a set of goals at once.

Rahimi et al. (2021a) describe SMASH, a human value-focused BDI system for controlling

devices in a Smart Home Internet of Things (IoT) environment. SMASH executes a GR cycle in

which a set of goals is selected for processing when given a set of beliefs, user-provided goals, goal

status information, and related information. Goals are selected incrementally when their conditions

(i.e., beliefs) are satisfied in activation rules and ordered high in importance by goal impact rules

and correlate well with the user’s priorities and preferences. Rahimi et al. (2021b) extended

SMASH with reinforcement learning techniques to learn user behaviors and values. While their

multiagent GR system incrementally selects a set of goals for agents to perform, their selection is

not modelled as an OP, the goals are not sequenced, and selection is not made under time

constraints.

Substantial research has focused on goal selection in GR agents. T-ARTUE (Powell et al., 2011)

uses case-based reasoning to select goals and active and interactive learning methods to expand and

refine its goal selection knowledge. In contrast, our agents do not expand their goal-selection

knowledge while underwater, where they have no contact with their human operator. M-ARTUE

(Wilson et al., 2013) instead assesses candidate goals using multiple reward functions to trade off

exploration and exploitation in partially-observable domains. Our agent does not leverage any

intrinsic motivation to pursue exploration, although desirable exploration can be rewarded through

exploration-oriented tasks, such as seafloor surveys. Also, both ARTUE variants select only a

single goal in response to discrepancies, rather than a set of goals, and they operate in a discrete

rather than a continuous domain.

Smith (2004) uses an OP representation to solve oversubscription problems in a Mars rover

domain. We instead introduce time-dependent costs between task nodes, dynamically computed

from a routing graph, and extend our work to a team of agents. Also, Smith uses state-dependent

projections of the OP graph to reason about state-dependent costs, whereas we instead compute

task costs dynamically during planning.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

5

Núñez-Molina et al.’s (2020) DQP architecture uses deep Q-learning to select subgoals predicted

to minimize the length of a solution path in a discrete video game scenario and an automated planner

to generate a plan to achieve it. Their approach addresses the problem of selecting from large goal

spaces, attempts to optimize overall performance through goal ordering, and considers the impact

of individual goal selection on overall performance. Our agents instead: do not use reinforcement

learning; operate in a continuous domain; and exploit a pre-existing library of tasks that the robot

can complete. Bonanno et al. (2016) also use deep learning for goal selection, in this case for a

Minecraft scenario. Similar to our approach, it uses a predefined library of tasks in a continuous

domain. Cox (2016) instead describes a formal extension of automated planning to GR and

characterizes the problem of goal selection as one of formulating or changing goals, rather than of

learning a goal selection function. However, all three efforts select a single goal at a time, rather

than select and order a complete goal sequence.

BDI agents have been designed to pursue multiple goals simultaneously. For example,

Tinnemeier et al. (2007) describe a mechanism that allows BDI agents to process and select among

incompatible goals. In contrast, our agents pursue goals only sequentially, and cannot select

simultaneous conflicting goals.

Kondrakunta and Cox (2017) describe a goal-selection technique for a simulated construction

domain. Similar to ours, their technique involves time-varying values, task-dependent costs and

rewards, and time limits on execution. However, our approach implements secondary preferential

costs to consider during goal selection, rather than using time as a single cost. Also, their approach

is implemented within a cognitive architecture (MIDCA) using automated planning

representations, and selects goals based on a utility ratio of reward over cost, rather than explicitly

maximizing reward within a budget. Finally, our approach dynamically selects a goal sequence

based on costs derived from observed conditions in situ.

Siler and Cox (2018) extend the concept of preference-based planning to encompass problems in

which the complete set of goals is unachievable, using partial orders over goals to express the

qualitative preferences of human operators as to which goals should be included. Similar to our

problem, they focus on achieving a preferred sequence of goals within budgets. However, their

approach differs by considering qualitative ordering rather than parametric reward and by using

automated planning, without preferential routing, in a discrete, atemporal domain.

3. Goal Reasoning for an Embodied Agent

To improve our GR model for use in embodied agents, we seek to incorporate accurate estimates
of the utility (i.e., balancing rewards and costs) of pursuing goals and the ability to select long-term
sequences of goals. To do so, we directly incorporate a model of spatial navigation and execution,
and we optimize goal sequences using utility estimates by attempting to maximize the agent’s
reward while respecting cost budgets (e.g., total mission time). Our approach to GR for AUV

control requires, among others, the following capabilities (which are detailed below):

1. A GR model of spatiotemporal domains for use in embodied agents;
2. A route planner to generate vehicle trajectories and estimate their costs, tightly integrated

with GR;
3. A goal selection function to select and order a sequence of potential mission goals to

pursue.

M.A. WILSON AND D.W. AHA

6

3.1 Goal Reasoning Model

3.1.1 State Model

To reason about embodied-agent domains, our state representation must model spatiotemporal

features that describe the dynamics of the environment and the entities which serve as loci for many

of the agent’s goals. Our model supports two classes of features:

• Features that may be represented as points (e.g., another vessel or a mine-like object on the
ocean floor);

• Features that may be represented as regions (e.g., an area to search or an obstacle to avoid).

To represent these features, our model includes the following aspects of the environment that may

affect goal decisions:

• Points of interest 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑙}, with 𝑝𝑖 = 〈𝑝𝑜𝑠𝑖, 𝑣𝑒𝑙𝑖〉 (i.e., a position and a velocity)
• Regions 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘}, with 𝑟𝑖 = 〈〈𝑥1

𝑖 , 𝑦1
𝑖〉, 〈𝑥2

𝑖 , 𝑦2
𝑖 〉, … , 〈𝑥ℎ

𝑖 , 𝑦ℎ
𝑖 〉〉 (i.e., a sequence of

vertices defining a polygonal area)

Regions are typically predefined (e.g., as areas an operator wants to survey), while points of interest
may be added, removed, or updated during execution. For the purpose of our AUV missions, we

use a primarily 2D model of the environment (i.e., 𝑥-𝑦 or latitude-longitude coordinates), but these
representations could be extended to higher dimensions for more advanced missions or other
domains. The region in which the entire mission will take place is encompassed by an operations
area. Figure 1 illustrates our model of spatial features in the environment.

 Additionally, the state represents the current configuration (i.e., position, heading, and speed) for
the vehicle, and beliefs about teammates’ configuration in a multi-vehicle problem.

3.1.2 Goals, Tasks, and Behaviors

Automated planning models often represent goals as desired states that an agent can achieve by

choosing a correct sequence of discrete actions. In our continuous embodied domain, we abandon

Figure 1: Spatial features of the environment in the embodied goal reasoning model, demonstrating

a mission layout used during test missions in Boston Harbor.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

7

action models and adopt an alternative ontology, similar to that of Balakirsky et al. (2017), in which

goals are achieved by completing predefined tasks. There is a one-to-one correspondence between

goals 𝑮 and tasks 𝑻. Tasks are completed by executing a sequence or set of predefined behaviors.

Each behavior encodes reactive control instructions to drive a robot or vehicle in a continuous

domain, and may be parameterized by the particulars of a given task.

 For instance, the goal to identify mine-like objects on a seafloor region may be achieved by

completing a survey task. When it is time to complete the task, the agent should activate a set of

behaviors that direct the robot to drive long, straight lines, with a sensor activated, over that

particular region.

 This ontology maps naturally onto the structure of the MOOS-IvP autonomy framework we use

to help us control AUVs; it contains a library of predefined behaviors, implemented in C++, to

guide a vehicle to complete tasks. We do not consider discrete actions the agent may take; we model

only tasks to be completed. The agent must select which tasks to pursue and in what sequence, and

task descriptions map to behaviors that should be activated and the appropriate parameters for them.

Typically, tasks and their implementing behaviors are defined with respect to spatial features in the

environment, as described above.

 Each task 𝑇 has a reward value 𝑟(𝑇) and a cost vector 𝑐(𝑇), both of which may be parameterized

by the particulars of the task (e.g., surveying a larger region garners more reward but takes more

time than a smaller region). The primary cost of a task is the time it will take to complete; secondary

costs express preferential behavior (e.g., by modeling risk as a cost, we can encourage the agent to

pursue low-risk rather than high-risk tasks). Task rewards and costs are used during goal-sequence

selection to compute a high-reward sequence that does not violate user-defined cost budgets. To

account for the dynamic nature of the environment, tasks’ costs are time- and state-dependent. For

instance, a survey task’s risk may be high if another vessel is projected to enter the region while

the survey is underway, but low otherwise.

3.2 Route Planning

Tasks are completed by executing behavior-driven maneuvers with respect to physically situated

features of the environment; thus, tasks themselves are spatially situated. Every task 𝑇 has a start

position and an end position in the agent’s configuration space. (For example, to survey a region of

the seabed, the AUV must be present at that region, and it will finish the task at the end of the final

leg of the survey.)

 To navigate between tasks, we construct a probabilistic roadmap (PRM) (Kavraki et al., 1996) in

the operations area, with the requirement that it intersect every predefined region of interest for the

agent. A PRM is a graph of spatial connectivity: the graph’s nodes are positions in space, and an

edge 𝑒 connects two positions 𝑝𝑜𝑠1 and 𝑝𝑜𝑠2 if the distance between them is less than some

maximum 𝑑𝑚𝑎𝑥 and there is a navigable path the vehicle can follow from 𝑝𝑜𝑠1 to 𝑝𝑜𝑠2. Nodes are

distributed at random in the free configuration space of the vehicle until sufficient connectivity (i.e.,

a node in every region of interest, with no isolated subgraphs) is achieved. Figure 2 depicts an

illustrative PRM in the environment of Figure 1. The PRM is not used for guidance during task

execution (which is driven by reactive behaviors), but only for navigation between tasks.

 Each edge 𝑒 in our PRM has a cost vector 𝑐(𝑒), expressing the same primary and secondary costs

as described above for tasks. We estimate the cost of navigating from one task to the next by

M.A. WILSON AND D.W. AHA

8

selecting the nearest PRM nodes to the start and end positions of the tasks and using an A* search

routine to find the shortest distance between the nodes, combining costs according to a preferential

weight scheme selected by the human operator.

 During periodic updates to the agent’s belief state, we recompute time-dependent costs for the

PRM’s edges. For example, the risk cost of an edge will be high at times when other vessels are

near it, and low otherwise. Likewise, the navigation cost of an edge will be higher when ocean

currents are counter to the direction of motion than when they are aligned with it. Using this time-

dependent PRM, we are able to compute the cost of maneuvering from one task to the next, based

on time of navigation (Chabini & Lan, 2002), during goal-sequence selection.

3.3 Goal Sequence Selection

Once the agent has models of the costs and rewards associated with tasks and navigation, we can

model the goal-sequence selection problem as a graph, with each node representing a task 𝑇 ∈ 𝑻

and associated reward 𝑟(𝑇), and edges between nodes representing the costs 𝑐(𝑇1, 𝑇2, 𝑡) to navigate

to and execute the next task at a given time 𝑡. Special nodes are inserted to represent the current

state and the end of the mission. Figure 3 illustrates this structure.

 The problem of selecting a goal sequence can be expressed, using this graph structure, as an

instance of the OP (Golden et al., 1987), an NP-hard problem sharing characteristics with the

Traveling Salesman Problem (TSP) and the Knapsack Problem. The OP is the problem of selecting

a subset of nodes 𝑻′ ⊆ 𝑻 on the graph to visit and a sequence 𝜋 = 〈𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′〉 in which to visit

them (i.e., a path through the graph to visit all selected nodes), such that the reward is maximized

without violating cost budgets 𝐵⃗⃗ (e.g., a time budget and a risk budget). That is, we wish to select

𝑻′ ⊆ 𝑻 and 𝜋 to maximize ∑ 𝑟(𝑇′)𝑇′∈𝑻′ , subject to ∀𝑖 ∑ 𝑐𝑖(𝑇
′) < 𝐵𝑖𝑇′∈𝑻′ .

Figure 2: A probabilistic roadmap connecting regions inside the operations area

from Figure 1, with randomly distributed nodes. This example contains no fixed

obstacles.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

9

 Additionally, for some tasks, we consider the possibility of partially completing the task. For

instance, the vehicle may not have time to survey the entirety of a region, but may have time to

survey half of it. We define a discrete number of mutually-exclusive variants of these tasks,

representing different levels of completion. For instance, we might consider variants of the survey

task representing one-fourth, one-half, three-fourths, or full completion, and only one of these

variants may be selected for any given plan.

4. Goal Sequence Selection Optimizers

The cost for any edge in the goal-sequence selection OP will depend on the time taken to reach the

edge (i.e., on the path already taken to reach the preceding task). Thus, the particular OP expressing

the single-vehicle goal-sequence selection problem is a Time-Dependent OP (TDOP). Solving the

TDOP with linear programming optimization tools, in this domain, involves either an impractically

large problem matrix or very large time discretization steps (and consequent imprecision). Instead,

we designed and implemented several anytime optimizers for the exact goal-sequence selection

problem. They dynamically compute edge costs based on the partial solution preceding the edge in

question. The performance of time-dependent A* routing allows us to evaluate many possible goal

sequences without pre-caching cost values. Sections 4.1-4.4 describe the optimizers we

implemented for solving the single-vehicle TDOP before extending to a multi-vehicle problem.

4.1 Branch and Bound

The branch-and-bound algorithm is a tree search that recursively expands nodes (i.e., in our
problem, visiting tasks that have not yet been visited on the current branch of the tree) while
tracking the minimum known value at a solution for an objective function. At every step the partial

solution is examined to see if it violates the known minimum of the objective function; any branch
that does violate the known minimum is pruned. This algorithm was a logical option as it is

Figure 3: Graph structure representing available tasks as nodes, with costs to navigate and complete

the next task associated with edges and rewards associated with completing task nodes.

M.A. WILSON AND D.W. AHA

10

commonly used for NP-hard optimization problems and was developed for use on the TSP (Little
et al., 1963).
 Our branch-and-bound optimizer is unique among our optimizers in that it does not maximize

reward; because it is impossible to know how much reward a partial solution will eventually accrue,
no branch would ever be pruned. Instead, the optimizer minimizes cost, including an additional
“missed reward cost” for unachieved goals (although this additional cost is not used in the
bounding/pruning operation, to preserve correctness). This approach requires an additional
parameter that weights the missed reward cost versus navigation and task costs in the problem.
 Branch-and-bound has several shortcomings, including the need to determine a good value for

the weight parameter, the lack of directed search, and the unlikelihood of finding certain solutions
under time constraints. However, the branch-and-bound optimizer provides a useful baseline for
other optimizers.

4.2 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995) is a
metaheuristic algorithm that proceeds in two phases. In the construction phase, a random solution
is greedily constructed. In the refinement phase, a local search is used to find improvements on the
constructed solution. We selected GRASP optimization as a possible approach as it has been used
on several variants of the orienteering problem (e.g., Souffriau et al., 2008).
 In our GRASP optimizer, the construction phase proceeds by randomly selecting a task that is

not yet in the goal sequence, and inserting it at the optimal position in the existing solution, where
the “optimal” position is defined as the one that incurs the lowest cost (since the task will garner
the agent the same reward at any position). This is repeated until no further tasks can be inserted
without violating the budgets.
 The local-search phase accepts the constructed solution and a list of tasks that were not inserted
during the construction phase. The optimizer attempts to swap each of these remaining tasks with

a task in the solution that will maximally increase the overall reward of the solution.

4.3 Genetic Algorithm

Genetic algorithms are a metaheuristic approach to optimization problems that represent solutions

as a sequence of codes. Over repeated iterations, groups of solutions are evaluated, downselected,
combined, and new solutions randomly generated. Although genetic algorithms provide undirected
search, we believe including this approach provides another useful baseline for techniques that are
more targeted to the structure of the orienteering problem.
 In our genetic algorithm optimizer, individual solutions represent a sequence of some subset of
goals, with some of the goals in the solution optionally disabled. At each iteration, the solutions are

randomly partitioned and the best individuals from each partition retained. Other solutions are
randomly paired and a random subsequence of goals swapped between the two (crossover) and
randomly subjected to mutations such as enabling or disabling goals, or switching one goal for
another.
 Our genetic algorithm optimizer uses 20 candidate solutions per generation, retains the four best
solutions to the next generation, and alters the 16 remaining solutions by:

• Swapping a random subsequence of tasks between adjacent solutions;
• With probability 𝑝0 = 0.05, probabilistically applying one of three mutations to the solution.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

11

These three mutations are (1) enabling or disabling a task, (2) changing a task in the solution for
another task, and (3) changing the completion level of a task in the solution.

4.4 Ant Colony

Ant colony optimization is a bio-inspired approach to an explore-and-exploit search procedure for
path-finding in graphs, in which several solutions are constructed per iteration and promising
solution paths are given additional weight for future iterations.
 Dorigo and Gambardella (1997) applied ant colony optimization to the TSP; we adapt their

approach to the TDOP. Although we altered the algorithm to start all ants at the vehicle’s current
position (versus at a random node) and to permit the optimizer to consider a solution complete after
visiting only a subset of tasks, few major alterations were required, as node expansion rules for the
TDOP are straightforward (i.e., successor nodes are simply tasks that have not been visited).
 We use 𝑛 = 10 ants per group traveling through the problem, and adopt Dorigo and
Gambardella’s values of 𝑞0 = 0.9 (i.e., the probability of selecting the successor with the highest

pheromone level, rather than probabilistically selecting a successor by its quality) and 𝛽 = 2.0 (the
exponent applied to utility for computing successor quality).

5. Distributed Multi-Vehicle Teams

As AUVs proliferate, missions employing teams of vehicles are becoming more common. Teams
of vehicles can divide tasks to accomplish missions in less time, and can provide wider sensor
coverage and a greater variety of sensing modalities than a single vehicle. However, the ability to
respond to dynamic environments during mission execution is still useful.
 During underwater operations, communications with AUVs are limited and unreliable, making
it difficult to provide centralized mission direction. Thus, we aim to provide a distributed autonomy

model in which individual AUV agents react to their own sensor inputs and provide state updates
to their teammates on an opportunistic basis when communications are available. Vehicles can
quiesce to a shared plan as they receive relevant data about the environment from their teammates.

5.1 Orienteering Problem for Teams

For an agent to determine what goals it should pursue, it needs to know what goals its teammates
will pursue given the same data. Therefore, each agent needs to construct a complete plan for the
entire team on each goal reasoning cycle, using the same GR and planning models as its teammates.

Constructing a complete plan for multiple agents to visit nodes with time dependent costs or
rewards is frequently studied in the context of tourist scheduling (Gavalas et al., 2015) and includes
time windows when nodes are “open” for visiting; this is a variant of the orienteering problem
known as the time-dependent team orienteering problem with time windows (TDTOPTW). Since
we do not consider time windows, we are concerned only with the time-dependent team
orienteering problem (TDTOP). The OP graph model for the goal sequence selection problem can

be extended by introducing start and end nodes for each vehicle, with the start nodes representing
each agent’s state at the beginning of planning and the restriction that the 𝑖th end node can only be
visited by the 𝑖th vehicle. Figure 4 illustrates the same goal selection problem as Figure 3, but for a
2-vehicle team.

M.A. WILSON AND D.W. AHA

12

5.2 Optimizers for Teams

There are several possible approaches to extending the optimizers described in Section 4 that use
multiple vehicles to solve TDTOP problems. Initially, we have opted for straightforward

modifications. For the branch-and-bound optimizer, the search expansion is modified to include
expansions for each vehicle on the team. For the GRASP optimizer, during the construction phase,
each task is assigned to a successive vehicle (i.e., the first random task is assigned to the first
vehicle, the second random task to the second vehicle, and so on). For the genetic algorithm
optimizer, each genome in the sequence encodes not only a task and its activation state, but also
the vehicle to which it is assigned, and a fourth mutation alters the vehicle to which a task in a

candidate solution is assigned. Finally, for the ant colony optimizer, we modify state expansion to
generate child nodes considering both the next task and which vehicle will be assigned to it.

6. Precedence Constraints

Although goals can frequently be accomplished in any order, it is sometimes the case that one goal
must be achieved before another. For example, in the AUV domain, a vehicle must scan the seabed
for objects of interest before attempting to acquire additional data and classify any detected objects.
To express these requirements, we can impose a partial ordering on the set of goals. This provides
an additional constraint for the goal sequence OP, stating that any dependent goal 𝐺2 can be
achieved only after a prerequisite goal 𝐺1. We investigate two techniques for solving goal sequence

selection with precedence constraints, as described in Sections 6.1-6.2.

Figure 4: Graph structure representing a team-based goal selection problem

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

13

6.1 Topological Sorting

We extended many of our existing solvers to the precedence-constrained TDTOP problem using a
technique originally developed for precedence constraints in the multi-TSP (McMahon et al.,
2020). This approach uses Kahn’s algorithm (Kahn, 1962) for topological sorting to place tasks
into layers, with each successive layer containing all tasks that can be accomplished once the
previous layer is complete. Each layer is an ordinary (i.e., non-precedence-constrained) multiagent
TSP and can be solved as such.

 In applying this approach to the TDTOP of goal sequence selection, the major difficulty is that,
unlike in the TSP, an OP solution for one layer may leave out prerequisite tasks for future layers.
Thus, layers are not truly independent problems, though each layer can be solved as though its tasks
contain no precedence constraints. To address this problem, we filter tasks whose prerequisites are
not satisfied by previous layers out of each layer’s task list before solving. Each layer can then be
solved using one of the existing TDTOP optimizers. To obtain high-quality solutions in optimizers

with randomized behavior, we re-run the per-layer optimizer several times and the overall
optimization over all layers several times, taking the best overall solution.

6.2 Bee Colony Optimization

Yu et al. (2019) addressed the TDTOP with time windows in the context of scheduling tourist visits
using a bee colony optimizer combined with simulated annealing. The time-dependent team
orienteering problem with time windows is similar to the precedence-constrained TDTOP. Two
major differences are that, in their problem, the time dependence arises in the context of rewards
rather than costs, and their constraints on when nodes may be visited are in the form of acceptable
time windows, rather than ordering requirements. However, the difference in time dependence

(rewards or costs) does not affect the operation of the algorithm, and the given approach for visit-
time violations in their bee colony optimizer is simply to drop the affected node from the solution,
which is easily applied to precedence constraints instead of time-window constraints (i.e., the
algorithm simply skips a task in a solution if its prerequisites are not satisfied).
 Bee colony optimization proceeds from an initial set of randomized solutions, improving each
by local search, and focusing extra local search steps on a solution selected randomly, weighted by

solution quality. We adapt the approach of Yu et al. (2019) by altering the constraint checking to
accommodate precedence constraints. We also altered their method for neighborhood generation
during the local search phase. Their neighborhood generation proceeds by altering the solution in
one of four ways:

1. Move a randomly selected task from its position in the solution to immediately after another
randomly selected task in the solution;

2. Swap the position of two randomly selected tasks in the solution;
3. Choose a subsequence of tasks in the solution and reverse their order;
4. Change the time window of a selected task.

Since we do not consider time windows, we removed the fourth alteration and replaced it with (1)
altering the completion level of task in the solution and (2) assigning a task from the solution to a
different vehicle. All parameter values are set as in Yu et al. (2019).

M.A. WILSON AND D.W. AHA

14

7. Experiments and Results

To assess the efficacy of the goal reasoner in controlling AUVs, we performed simulated testing in
randomized trials for a mine-countermeasures mission using MOOS-IvP’s uSimMarine and related
MOOS simulation tools. The operations area was a 1-kilometer-square zone in Boston Harbor
where we have performed in-water trials in the past. Three regions, two small and one large,

containing mine-like objects, were designated to be surveyed, and for any mine-like objects to be
reacquired and scanned after surveying. A team of two AUVs were assigned to perform these tasks.
As additional optional goals, the AUVs were permitted to loiter in one place for a short amount of
time (which garners no reward but permits an AUV to “wait out” a high-risk situation), surface and
relay a message to topside operators, or refine data on a detected surface vessel.
 Two surface vessels were simulated to provide potential collision risks to the AUVs; simulation

of these vehicles was designed to mimic behavior of real surface vessels observed in Boston Harbor.
Each surface vessel either followed a randomly assigned heading through the operations area
(mimicking, e.g., a ferry or shipping traffic) or wandered from random point to random point in the
operations area (mimicking, e.g., a pleasure craft or fishing vessel). A global random seed
synchronized the AUVs’ randomized optimizers and also controlled the behavior of surface vessels
and the distribution of mine-like objects; by varying the seed, we obtained different variants of the

scenario.
 As simplifying assumptions, we permitted the AUVs to directly observe the position, heading,
and speed of the surface vessels at all times, and permitted the AUVs to communicate continuously
throughout the scenario, providing updates to one another on observed mine-like objects. (Our
MOOS-IvP tools include a simulation of sonar-based detection and estimation for surface vehicles,
but we wished to test the goal reasoning component without confounding factors.)

 The surface vessels provided a unitless “risk” cost to AUVs starting at a distance of 150m,
increasing linearly to a maximal value of 100 per second at distance 0. For pathfinding, we weighted
time cost at 20% and risk cost at 80% of the overall cost. The roadmap was constructed in batches
of 5000 points until all regions were connected, with a maximum connection distance of 50m. The
AUVs were given a time budget of 4 hours (14,400 s) and a risk budget of 1000. Optimizers were
given 10s per goal reasoning cycle to construct a plan, and goal reasoning cycles were triggered

either by discrepancies (a vehicle out of its expected position, or a new mine-like object discovered)
or every 3 minutes. Simulations were run at 2x real time, with the optimizers’ time limit adjusted
to real time (i.e., the optimizers were given 20 simulation seconds to construct plans).
 Due to time constraints, we did not examine the performance of the branch-and-bound optimizer,
which has been the weakest of our optimizers in single vehicle scenarios. We include, as baselines,

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

15

an agent that creates an initial plan using the GRASP optimizer and never replans, as well as an
agent that creates an initial plan using the GRASP optimizer and replans, but cannot alter its goals

or their order.
 Figure 5 and Figure 6 display the average reward earned (by completing tasks) and risk incurred
(by straying too close to surface vessels) for each of the optimizers and the two baseline agents,
across five randomized trials in our test mission. All GR agents earn lower reward through task
completion than the non-replanning agent, but this is a reasonable outcome, as responding to
dynamic threats in the environment to avoid risk can make it difficult to complete tasks. Although

three of four GR agents do not perform well in actually avoiding risk in simulation, the GRASP

Figure 6: Average risk (i.e., cost) obtained from summing across five random

variations of a simulated mine-countermeasures mission.

Figure 5: Average reward obtained from summing across five random

variations of a simulated mine-countermeasures mission.

M.A. WILSON AND D.W. AHA

16

agent does, on average, respect the risk budget of 1000. We observe that its average reward is also
second-lowest among the agents, but believe this is a natural tradeoff for successfully avoiding
threats in the environment.

Based on the results of our experiments, we conclude that an appropriate optimization technique
(i.e., GRASP) may provide effective balancing of preferential costs against rewards when deciding
what tasks to pursue in dynamic environments. An agent without any replanning capabilities
gathers the most reward, but at the cost of ignoring changes in the environment completely, thereby
incurring risk beyond the given budget. An agent that can replan, but not change its goals or their
order, suffers from similar issues but on a lesser scale. Among the GR optimizers we examined, the

GRASP optimizer is best able to respect budgets for preferential costs while operating effectively
in dynamic environments. We hypothesize that its lower reward values are the result of the
environment’s dynamics frequently invalidating plans before they can be completed. However,
future work is needed to assess this conjecture.

8. Conclusions and Future Work

We introduce a new goal reasoning (GR) model for use in embodied agents, specifically targeting
its control of autonomous underwater vehicles (AUVs). Our model selects goals for an agent to
pursue only after estimating and accounting for the estimated costs for achieving a goal, in addition
to that goal’s reward value. Furthermore, we use this model to select and sequence a subset of a

given set of goals, where not all goals can be achieved within a limited time budget. We model this
problem as a Time-Dependent Team Orienteering Problem (TDTOP), describe four goal sequence
selection optimization algorithms and their extension to the multiagent setting, and compare their
performance against two baseline systems on simulated mine-countermeasures missions. We found
that the simplest baseline algorithm obtained the highest summed reward, but at a higher risk cost
than incurred by the most risk-averse optimizer for our GR problem. Future work should include

identifying the underlying properties of the optimizers that drive these results, and identifying
strategies that may enable greater rewards for the GR agent variants in highly dynamic
environments. Additional future work may include investigating alternatives to PRMs for
navigation (e.g., some form of regular node distribution or tessellation of the operations area), as
well as the ability to dynamically identify and add regions of interest to the agents’ model of the
environment.

Acknowledgements

The authors gratefully acknowledge the contributions of James McMahon (NRL), Jennifer Nelson

(SSEP student employee), Gregory Hyde (NREIP student intern), Ari Goodman (NAVAIR

Lakehurst), Jonathan Decker (NRL), Phil Baldoni (NRL), Luke Calkins (NRL), and Artur Wolek

(ASEE postdoctoral fellow).

References

Aha, D.W. (2018). Goal reasoning: Foundations, emerging applications, and prospects. AI

Magazine, 39(2), 3-24.

Balakirsky, S., Schlenoff, C., Rama Fiorini, S., Redfield, S., Barreto, M., Nakawala, H., ... &

Haidegger, T. (2017). Towards a robot task ontology standard. In Proceeding of the

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

17

International Manufacturing Science and Engineering Conference. Los Angeles, CA: ASME

Press.

Benjamin, M., Schmidt, H., Newman, P., & Leonard, J. (2010). Nested autonomy for unmanned

marine vehicles with MOOS-IvP. Journal of Field Robotics, 27(6), 834-875.

Bonanno, D., Roberts, M., Smith, L., & Aha, D.W. (2016). Selecting subgoals using deep

learning in Minecraft: A preliminary report. In D.W. Aha, A. Wagner, A. Gordon, & Y.

Aloimonos (Eds.) Deep Learning for Artificial Intelligence: Papers from the IJCAI Workshops.

New York, NY: Unpublished.

Bride, H., Dong, J. S., Green, R., Hóu, Z., Mahony, B., & Oxenham, M. (2021). GRAVITAS: A

model checking based planning and goal reasoning framework for autonomous systems.

Engineering Applications of Artificial Intelligence, 97, 104091.

Chabini, I., & Lan, S. (2002). Adaptations of the A* algorithm for the computation of fastest

paths in deterministic discrete-time dynamic networks. Transactions on Intelligent

Transportation Systems, 3(1), 60-74.

Cox, M.T. (2016). A model of planning, action, and interpretation with goal reasoning.

Proceedings of the Fourth Annual Conference on Advances in Cognitive Systems (pp. 48-63).

Evanston, IL: Cognitive Systems Foundation.

Dorigo, M., & Gambardella, L.M. (1997). Ant colonies for the travelling salesman problem.

Biosystems, 43(2), 73-81.

Feo, T.A., & Resende, Mauricio G. C. (1995). Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6(2), 109–133.

Fox, M., & Long, D. (2006). Modelling mixed discrete-continuous domains for planning. Journal

of Artificial Intelligence Research, 27, 235-297.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for

the time dependent team orienteering problem: Application to tourist route planning. Computers

& Operations Research, 62, 36-50.

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics,

34(3), 307-318.

Golpayegani, F., & Clarke, S. (2016). Goal-based multi-agent collaboration community formation:

a conceptual model. In M. Roberts, D. Borrajo, M. Cox, & N. Yorke-Smith (Eds.) Goal

Reasoning: Papers from the IJCAI Workshop. [makro.ink/ijcai2016grw].

Hofmann, T., Limpert, N., Mataré, V., Ferrein, A., & Lakemeyer, G. (2019). Winning the RoboCup

Logistics League with fast navigation, precise manipulation, and robust goal reasoning.

Proceedings of RoboCup 2019: Robot World Cup XXIII (pp. 504-516). Sydney, Australia:

Springer.

Hofmann, T., Viehmann, T., Gomaa, M., Habering, D., Niemueller, T., & Lakemeyer, G. (2021).

Multiagent goal reasoning with the CLIPS Executive in the RoboCup Logistics League.

Proceedings of the Thirteenth International Conference on Agents and Artificial Intelligence (pp.

80-91). Vienna, Austria: SciTePress.

Jaidee, U., Muñoz-Avila, H., & Aha, D.W. (2013). Case-based goal-driven coordination of

multiple learning agents. Proceedings of the Twenty-First International Conference on Case-

Based Reasoning (pp. 164-178). Saratoga Springs, NY: Springer.

Kahn, A.B. (1962). Topological sorting of large networks. Communications of the ACM, 5(11),

558–562.

M.A. WILSON AND D.W. AHA

18

Kavraki, L.E., Svestka, P., Latombe, J.C., & Overmars, M.H. (1996). Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and

Automation, 12(4), 566-580.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven autonomy for responding to

unexpected events in strategy simulations. Computational Intelligence, 29(2), 187-206.

Kondrakunta, S., & Cox, M.T. (2017). Autonomous goal selection operations for agent-based

architectures. In M. Roberts, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal Reasoning: Papers

from the IJCAI Workshop. Melbourne, Australia: [http://makro.ink/ijcai2017grw].

Kondrakunta, S., Gogineni, V.R., Molineaux, M., Munoz-Avila, H., Oxenham, M., & Cox, M.T.

(2018). Toward problem recognition, explanation and goal formulation. In M. Molineaux, D.

Dannenhauer, & M. Roberts (Eds.) Goal Reasoning: Proceedings of the IJCAI Workshop.

Stockholm, Sweden: [https://dtdannen.github.io/faim2018grw].

Little, J.D.C., Murty, K.G., Sweeney, D.W., & Karel, C. (1963). An algorithm for the traveling

salesman problem. Operations Research, 11(6), 972–989.

McMahon, J., Baldoni, P., & Plaku, E. (2020). Precedence constrained multiple traveling salesman

problem for dynamic multi-robot systems. Unpublished manuscript.

Nelson, J. K., & Etemadyrad, N. (2018). Prioritizing goals in cognitive sonar: Tracking multiple

targets. Proceedings of the Twenty-First International Conference on Information Fusion (pp.

1-6). Cambridge, UK: IEEE Press.

Núñez-Molina, C., Nikolov, V., Vellido, I., & Fernández-Olivares, J. (2020). Goal reasoning by

selecting subgoals with deep Q-learning. arXiv preprint arXiv:2012.12335.

Oxenham, M., & Green, R. (2017). From direct tasking to goal-driven autonomy for autonomous

underwater vehicles. In M. Roberts, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal Reasoning:

Papers from the IJCAI Workshop. Melbourne, Australia: [http://makro.ink/ijcai2017grw].

Powell, J., Molineaux, M., & Aha, D.W. (2011). Active and interactive discovery of goal

selection knowledge. In Proceedings of the Twenty-Fourth Conference of the Florida AI

Research Society. West Palm Beach, FL: AAAI Press.

Rahimi, H., Trentin, I. F., Ramparany, F., & Boissier, O. (2021a). SMASH: A semantic-enabled

multiagent approach for self-adaptation of human-centered IoT. arXiv preprint

arXiv:2105.14915.

Rahimi, H., Trentin, I. F., Ramparany, F., & Boissier, O. (2021b). Q-SMASH: Q-learning-based

self-adaptation of human-centered Internet of things. arXiv preprint arXiv:2107.05949.

Rajan, K., & Py, F. (2012). T-REX: Partitioned inference for AUV mission control. In R. Sutton

& G. Roberts (Eds.) Further Advances in Unmanned Marine Vehicles. London, UK: The

Institution of Engineering and Technology.

Roberts, M., Apker, T., Johnson, B., Auslander, B., Wellman, B., & Aha, D. W. (2015).

Coordinating robot teams for disaster relief. In Proceedings of the Twenty-Eighth International

Flairs Conference. Hollywood, FL: AAAI Press.

Siler, C., & Cox, M.T. (2018). Generating plans for qualitative goal preferences. In M.

Molineaux, D. Dannenhauer, & M. Roberts (Eds.) Goal Reasoning: Papers from the IJCAI

Workshop. Stockholm, Sweden: [https://dtdannen.github.io/faim2018grw].

Smith, D.E. (2004). Choosing objectives in over-subscription planning, Proceedings of Fourteenth

International Conference on Automated Planning and Scheduling (pp. 393–401). Whistler, British

Columbia, Canada: AAAI Press.

 A GOAL REASONING MODEL FOR AUTONOMOUS UNDERWATER VEHICLES

19

Smith, D.E., Frank, J., & Cushing, W. (2008). The ANML language. In R. Barták & L. McCluskey

(Eds.) Knowledge Engineering for Planning and Scheduling: Papers from the ICAPS Workshop.

Sydney, Australia: [http://ktiml.mff.cuni.cz/~bartak/KEPS2008/wsProgram.html].

Souffriau, W., Vansteenwegen, P., Berghe, G.V., & Oudheusden, D.V. (2008). A greedy

randomised adaptive search procedure for the team orienteering problem. Proceedings of the

Ninth EU/MEeting on Metaheuristics for Logistics and Vehicle Routing (p23-24). Troyes,

France: Unpublished.

Tinnemeier, N.A.M., Dastani, M., & Meyer, J.-J. Ch. (2007). Goal selection strategies for rational

agents. Proceedings of the First International Workshop on Languages, Methodologies and

Development Tools for Multiagent Systems (pp. 54–70). Durham, UK: Springer.

Vilchis-Medina, J.L., Godary-Déjean, K., & Lesire, C. (2021). Autonomous decision-making

with incomplete information and safety rules based on non-monotonic reasoning. Robotics and

Automation Letters, 6(4), 8357-8362.

Wilson, M.A., McMahon, J., & Aha, D.W. (2014). Bounded expectations for discrepancy

detection in goal-driven autonomy. In A. Saffiotti, N. Hawes, G. Konidaris, & M. Tenorth

(Eds.) AI and Robotics: Papers from the AAAI Workshop (Technical Report WS-01-14).

Quebec City, Quebec, Canada: AAAI Press.

Wilson, M.A., McMahon, J., Wolek, A., Aha, D.W., & Houston, B.H. (2016). Toward goal

reasoning for autonomous underwater vehicles: Responding to unexpected agents. In M.

Roberts, D. Borrajo, M. Cox, & N. Yorke-Smith (Eds.) Goal Reasoning: Papers from the

IJCAI Workshop. [makro.ink/ijcai2016grw].

Wilson, M. A., McMahon, J., Wolek, A., Aha, D.W., & Houston, B.H. (2018). Goal reasoning for

autonomous underwater vehicles: Responding to unexpected agents. AI Communications,

31(2), 151-166.

Wilson, M., Molineaux, M., & Aha, D.W. (2013). Domain-independent heuristics for goal

formulation. In Proceedings of the Twenty-Sixth Florida Artificial Intelligence Research

Society Conference. St. Pete Beach, FL: AAAI Press.

Yu, V., Jewpanya, P., Lin, S.-W., Perwira Redi, A.A.N. (2019). Team orienteering problem with

time windows and time-dependent scores. Computers & Industrial Engineering, 127, 213-224.

