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Abstract
Autonomous agents in a multi-agent system work with each other to achieve their goals. However,
In a partially observable world, current multi-agent systems are often less effective in achieving
their goals. This limitation is due to the agents’ lack of reasoning about other agents and their
mental states. Another factor is the agents’ inability to share required knowledge with other agents.
This paper addresses the limitations by presenting a general approach for autonomous agents to
work together in a multi-agent system. In this approach, an agent applies two main concepts: goal
reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for
sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine
Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s)
to delegates its goals.

1. Introduction

Humans work effectively in teams. They reason about people, share their knowledge, and coop-
erate to achieve goals simultaneously. Similarly, autonomous agents in a multi-agent environment
should work to improve their efficiency and effectiveness. We define a multi-agent system as an
interacting combination of autonomous agents in an environment for our purposes. Often, multi-
agent systems function much better than single-agent systems because of their ability to achieve
assigned tasks. Besides task achievement, multi-agent systems can also share and delegate goals to
overcome problems or quickly achieve existing goals. Several problems can occur concurrently in
a dynamic world, thus requiring autonomous agents to generate goals in response. However, given
limited resources, a single agent cannot always respond to new problems and still achieve its current
goals. Whereas in a multi-agent system, agents can delegate goals to others. To effectively delegate
their goals, agents must reason about other agents’ knowledge, select an agent to delegate goals,
and share knowledge about the problem with the other agent. Acquiring such experiences improves
the agents’ knowledge about other agents, which helps the agent better delegate goals in the future.

The remainder of the paper is as follows. Section 2 describes the concept of goal-driven ma-
rine autonomy, a framework we used to integrate high-level and low-level autonomy mechanisms.
Section 3 talks about the concept of Multi-agent goal reasoning and our approach towards goal del-
egation when an agent has limited resources to achieve its goals. Section 4 presents our Theory of
Mind approach towards agent selection for goal delegation and knowledge sharing between the del-
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egating and receiving agent. It also talks about our approach towards accepting/rejecting delegated
goals by receiving agent. Section 5 describes the Marine Life Survey domain Kondrakunta et al.
(2021) followed by experimental design in section 6. The next section 7 presents the evaluation of
our multi-agent system with another multi-agent system which delegates goals to a randomly se-
lected agent(s). Section 8 discusses related research. Finally, Section 9 presents the closing remarks
and future research directions.

2. Goal-Driven Marine Autonomy (GDMA)

The objective of goal-driven marine autonomy (GDMA) is to integrate the high-level abstract rea-
soning of cognitive systems with the preciseness of control theory for complex continuous domains.
Such an integration enables the building of robust IPS for applications in dynamic and unpredictable
marine environments. We exploit results from a research area called goal-driven autonomy (GDA)
that focuses on managing the goals of cognitive systems and merge them with specifics of robotic
control theory in what we term control-driven autonomy (CDA) (see Figure 1).

With respect to actions, GDA involves goal management and strategies using goal predicate
structures and hierarchical task network plans. CDA involves task net optimization and path plan-
ning using waypoints and motion commands. With respect to perception, GDA involves problem
recognition and state interpretation using problem schemas and explanation patterns. CDA involves
sensor fusion and communication generation using vector field models and grid maps. Currently, we
have developed the top and bottom layers shown in this figure and await future research to provide
the mechanisms of managing uncertainty with belief spaces (but see Lin et al. (2020) for prelimi-
nary work toward this goal). Furthermore, we have yet to deploy platforms with GDA in field trials.
Instead, our AUVs employ CDA. Thus, when we use the term "agent," we are referring to GDA and
CDA in simulation. When eventually validated and fielded, the resulting GDMA agent aboard an
AUV will instantiate our initial IPS.

Figure 1. A multilayer approach to goal-driven marine autonomy. At the highest level, GDA performs goal
operations given beliefs about the environment. At the lowest level, control manages the actuators and updates
continuous sensor values. Mediating between the two, sets of possible states are mapped to discrete predicates
and actions are translated to control parameters.
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3. Multi-agent Goal Reasoning

Autonomous agents must be able to function effectively even with the introduction of new agents
into the world. The agents must be able to learn quickly about the new agent and must be able to
share and delegate goals effectively to the newer agent with little human intervention. Multi-agent
Goal Reasoning helps an agent to determine what goals to share and pursue among all its goals.
This choice helps an agent conserve its resources and improve its performance in the real world.
The following section 3.1 introduces goal delegation and its need in multi-agent systems.

3.1 Goal Delegation

In a dynamic environment where unexpected situations occur, an agent should often respond to the
developing problems. Therefore, an intelligent agent should generate goals in response to these
developing problems. However, with limited resources, an agent cannot pursue its new goals and
still achieve its current goals. So, to achieve all its goals, an agent should delegate some of its goals
to other agents.

The primary step involved in a goal delegation process is to recognize the need for delegation.
Table 1 shows an algorithm that returns a set of delegated goals gd when there is a need for goal
delegation. DetectDelegation takes the following inputs: goal agenda of the current agent (Ĝc =
{g1, g2, ...gc, ...gm}) and current state of agent’s perception (scc). While there are enough estimated
resources R̂(scc) in the world (line 2), the agent tries to compute the order of goals it can achieve
gachievable. Such a goal ordering is possible by applying goal-specific priority P̂ (g, scc) and resource
estimation functions R̂(g, scc) Gogineni et al. (2020). The agent then selects a set of goals gs which
has maximum priority (line 3) and minimum resource consumption (line 4). Later, it computes the
estimated resources to achieve selected goals gs (line 5). Furthermore, the agent adds the selected
goals to its achievable goals gachievable (line 6). The agent then continues executing these steps until
all the goals in its goal agenda are ordered (line 7). Finally, it computes the goals it must delegate
(gd) by subtracting the goals in its agenda with the goals it can achieve (line 9). The function finally
returns the set of delegated goals (line 10).

4. Theory of Mind

In a distributed multi-agent environment, often an individual agent acts on its own. It is not feasible
for the agent to know all the information about other agents’ goals and current states. So to delegate
goals, the agent is limited by its knowledge about other agents. Theory of Mind refers to reasoning
other agents’ mental states using the agent’s knowledge about other agents.

In our multi-agent system, we developed a Theory of Mind approach to select an agent among all
the other agents in the environment for goal delegation. This approach is represented in section 4.1.
Furthermore, following this approach also aids the delegating agent in sharing required knowledge
with the selected agent. Such knowledge can help the selected agent to successfully achieve the
delegated goals. This knowledge sharing algorithm is represented in the section 4.2
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Table 1. A method for detecting goal delegation by the current agent (agentc). Parameter Ĝc is the goal
agenda of the current agent, and scc is the known observed state of agentc.

DetectDelegation (Ĝc, scc)
1. gachievable ← ∅
2. r̂ ← R̂(Ĝc, scc) // Estimation of agent’s resources
3. while r̂ > 0 do // Loop until the agent has enough resources
4. gs ← argmax

g∈(Ĝi−gachievable)

P̂ (g, scc) // Select goals with maximum priority

5. gs ← argmin
g∈gs

R̂(g, sci)
// From the goals with the same priority,

select goals with minimum resources

6. r̂ ← r̂ − R̂(gs, scc) // Estimate the remaining resources
7. gachievable ← gachievable ∪ gs // Add selected goals to agent’s achievable goals
8. if (Ĝc − gachievable) is ∅ then // Break, if agent can achieve all its goals
9. break

10. gd ← (Ĝc − gachievable) // Goals agent cannot achieve
11. return gd // Return delegated goals

4.1 Agent Selection

In a multi-agent dynamic environment, a delegating agent must select another agent capable of
achieving its delegated goals among all the other agents in the environment. Selecting an agent must
use its knowledge about other agents’ states, goals, and domain knowledge to simulate their ability
to achieve the delegated goal. To perform such an agent selection, we use Landmarks (Hoffmann
et al., 2004) for the delegated goals and select the agent that takes minimum cost to achieve these
landmarks. Landmarks are the states that exist in every plan to achieve the goal.

Table 2 represents the algorithm that the current agent agentc applies to select an agenti to
delegate its goals gd. AgentSelection algorithm takes the following inputs: all the candidate agents
in the environment CA = {agent1, agent2, ...agentk}, their domain knowledge (Σ1,Σ2, ...Σk)
where Σ is a state transition function represented as (S,A, γ), agentc’s own domain knowledge
Σc and set of goals to delegate gd. Agentc then computes the landmarks L[1..m] to achieve the
delegated goals gd (line 1). Later, it selects agenti that has the minimum estimated cost to reach the
first landmark (line 2 and line 3). Finally, agentc delegates its goals to agenti.

Table 2. A method for selecting an agent (agenti) by the current agent (agentc) to delegate its goals gd.
Parameter CA is the set of all candidate agents in the environment, (Σ1...Σk) are corresponding candidate
agents’ domain knowledge known to the current agent (agentc), Σc is the current agent’s domain knowledge,
scc is the known observed state of agentc, and gd is the set of goals to delegate by agentc.

AgentSelection((CA, (Σ1...Σk),Σc, scc, gd)
1. L[1, 2, ..m]← Landmarks(Σc, scc, gd) // Obtain landmarks to achieve delegated goals
2. agent_index← argmin

j∈CA
cost(Π̂(Σj , scj , L[1]) // Select agent with minimum cost to achieve first landmark

3. agenti ← CA [agent_index]
4. return agenti
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4.2 Knowledge Sharing

Given the selected agent agenti from section 4.1 and the goals to delegate gd 3.1, the delegating
agent agentc should share required knowledge to achieve the goal. However, due to partial ob-
servability and the distributed nature of the multi-agent environment, agentc cannot know what
knowledge the other agents require. However, agentc should reason using its knowledge to deter-
mine the information required by agenti to achieve the delegated goals.

Table 3 represents the algorithm that outputs the states (sshare) that agentc should share with
agenti. KnowledgeSharing algorithm takes the following input: agenti’s domain knowledge Σi =
(Si, Ai, γi), agentc’s known state of agenti (sci), agentc’s current state of the world (scc) and the
first Landmark L[1]. agentc plans 〈a1, a2, ...an〉 to achieve the first landmark (line 1). agentc then
computes expectations for every action of the plan (line 5). These expectations comes from the
preconditions and the effects of the actions. Later agentc tries to retrieve all the states (sr) that are
abstractly related to the computed expectations (sei) and its current state (scc) (line 6). Abstractly
related states are the states that have similar predicates or contain arguments that exists in both the
given state representations. Later, agentc adds it to the states sshare to share with agenti while
removing the states it has already shared sci (line 7). Finally agentc updates its knowledge about
agenti (line 8) and returns the states sshare to share (line 9).

Table 3. A method for computing the knowledge the current agent (agentc) must share with the delegated
agent (agenti). Parameter Σi is the known domain knowledge of agenti, sci is the currently observed state
of agenti, scc is the known observed state of agentc, and L[1]) is the first landmark.

KnowledgeSharing (Σi, sci, scc, L[1])

1. 〈a1, a2, ...an〉 ← Π̂(Σi, sci, L[1]) // Estimated actions to achieve first Landmark
2. sshare ← ∅ // Knowledge states to share with agenti
3. sei ← ∅ // The expected states of agenti
4. for a in 〈a1, a2, ...an〉
5. sei ← sei ∪ pre(a) ∪ a+ − a− // Expectations of agenti stemming from the results of action a
6. sr ← AbstractRelatedStates(sei, scc) // Related states of agentc to expectations
7. sshare ← sshare ∪ (sr − sci) // Add related states to share with agenti
8. sci ← sci ∪ sshare // Update knowledge of agenti
9. return sshare

4.3 Goal Acceptance and Goal Rejection

An autonomous agent in a multi-agent system cannot accept all the delegated goals. It is often
limited by the resources and must reason about its goals while rejecting or delegating the remaining
goals.

Table 5 shows an algorithm that returns the goals the agent can achieve given the agent’s goal
agenda Ĝi, current state sci and delegated goals gd. agenti estimates the goals it cannot achieve
gunachievable using the MonitorDelegation algorithm from section 3.1 (line 1). Later agenti adds
delegated goals gd to its goal agenda Ĝi if they are not in unachievable goals gunachievable (line 2
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and line 3). Finally returns the list of goals agenti can achieve (line 4) while rejecting the remaining
goals.

Table 4. Goal Acceptance and Goal Rejection

Table 5. A method to accept/reject a delegated goal by the selected agent agenti. Parameter Ĝi is the goal
agenda of the selected agent, sci is the known observed state of agenti, and gd is the set of goals delegated
by the current agent (agentc) to the selected agent (agenti).

GoalAcceptReject (Ĝi, sci, gd) // agent′is goal agenda, its current state and delegated goals
1. gunachievable ←MonitorDelegation(Ĝi ∪ gd, sci) // Obtain unachievable goals
2. if gd 6∈ gunachievable // If delegated goals are achievable
3. Ĝi ← Ĝi ∪ gd // Add delegated goals to goal agenda
4. return Ĝi

5. The Marine Life Survey Domain

Consider the problem of time-limited surveys of marine environments with autonomous underwater
vehicles (AUVs). Typical missions are to take various readings such as salinity, temperature, and
pressure throughout the water column and to investigate key aspects of marine life. An important
feature within a marine ecosystem is the presence of hot spots or regions of high fish density. These
areas and the aquatic pathways between them that fish transit represent areas of ecological sensi-
tivity. Thus, discovering the location of major hot spots, especially for endangered species, is an
important application of GDMA. However, many barriers exist in such environments that make mis-
sion success difficult. Sea creatures may attach themselves to platforms and slow progress. Tides
and currents exist that also impede progress and obstacles may appear requiring course change.

Our research team regularly deploys AUVs such as Slocum gliders and custom robotic fish for
the purpose of making such marine surveys and to test and evaluate new platforms. During missions,
the platforms surface to communicate on regular schedules or in response to forced interrupts. We
use such vessels to explore a region dedicated to research in Gray’s Reef National Marine Sanctuary
located on the inner shelf of the South Atlantic Bight off the coast of Savannah, GA (see Figure 2).
The restricted area contains fish previously tagged with acoustic transmitters that send an acoustic
signal or ’ping’ at a pre-determined frequency depending on the application, typically 5 minutes for
short experiments or every 30-180 minutes for longer-term tracking. AUVs can detect these fish
if the ping falls within a platform’s acoustic detection radius and can hear multiple pings from the
same fish (i.e., it can classify unique pings).

We implemented a simulator for this domain to test search techniques prior to actual deployment
and to empirically evaluate the mechanisms discussed in this paper. The lower right of Figure 2
shows the portion of the research area modeled by the simulator and split into 25 cells. One cell is
shown in the lower left of the figure. The red dots depict 1000 fish (currently assumed to be static)
that emit a ping every 17 time steps. In this cell, a hot-spot is located near the co-ordinate (6,14).
The blue dot represents a simulated AUV controlled by an agent, and the blue circle represents the
receiver detection radius. At Gray’s Reef, the detection radius varies with environmental conditions,
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Figure 2. Gray’s Reef National Marine Sanctuary is located off the coast of Georgia and contains a research
area shown in the insert shaded in pink. Within this, we represent a 5x5 subsection. This grid contains fish
hot-spots that are of interest to marine scientists, here within the cell at location (6,14). The agent (indicated
by the blue dot) is also in this cell. The circle around the agent indicates the sensor range for detecting
acoustic fish tags (the red dots).

but currently the simulator assumes it to be 2 co-ordinate units. As mentioned, an agent can identify
hot-spots based on the number of pings.

6. Experimental Design

As previously mentioned, agents in our multi-agent system identify when to delegate goals, select
agent(s) to delegate goals, share required knowledge with the selected agent, and finally decide on
goal acceptance or rejection. In this paper, we refer to this multi-agent system as the SMART.

We introduced two naturally occurring discrepancies in the Marine Life Survey Domain: Remora
attacks and Flow attacks. Remora attacks hinder the agents’ movement, which acts randomly with
a specific rate of occurrence. These Remora attacks negatively affect an agent’s speed, and enough
attacks could altogether disable the movement of an individual agent. An agent can successfully re-
spond to a Remora attack by formulating a goal to glide backward. Flow attacks occur at a specific
location in the Marine Life Survey Domain. These Flow attacks disable the agent and push them
out of the region. In such a case, an agent can only delegate its goals and asks the operator for help
to initiate a rescue operation.

Figure 3 shows the 5x5 region of the Marine Life Survey Domain in which SMART operates.
There are three agents in this multi-agent system, namely Grace, Franklin, and Remus. All these
agents are provided with initial goals to survey a specific part of the 5x5 region. For example, grace
is responsible for achieving nine survey goals represented as the blue region in the figure. Similarly,
Franklin and Remus have eight goals each to survey the green and red regions. Furthermore, as
shown in the figure, two specific flow-affected cells are at (2,0) and (0,2) in the region. When
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agents survey these flow-affected regions, they are pushed far from the region and are disabled.
However, they can delegate goals and call for help. Similarly, there are randomly occurring Remora
attacks, as mentioned above.

Figure 3. Experimental Design to evaluate a multi-agent system

Each trail in the above-mentioned experimental setting has different initial starting positions
for the agents. We have performed fifty trials for each experiment and repeated the experiment
three times with different random seed values. This randomness affects the occurrence of Remora
attacks, thereby changing the performance of the multi-agent system as a whole. Section 7 presents
the results and evaluates the performance of SMART in comparison with other multi-agent systems.

7. Empirical Results

To evaluate SMART in an experimental setting mentioned in the previous section, we introduced
another multi-agent system called RANDOM. Although RANDOM and SMART are similar in
identifying goals to delegate, they differ in agent selection, knowledge sharing, and goal accep-
tance/rejection. In RANDOM, the delegating agent randomly selects an agent to delegate its goals.
Furthermore, knowledge sharing is non-existent in RANDOM, while the receiving agent always
accepts the delegated goals. Furthermore, we also introduced another multi-agent system called
IDEAL to see the ideal performance of the agents in the absence of discrepancies and the need for
delegation.

Figure 4 depicts the results of SMART, RANDOM, and IDEAL multi-agent systems. The X-
axis represents the time taken by the multi-agent systems to achieve their goals, while the Y-axis
represents the percentage of goals achieved. As mentioned in the previous section 3, for every multi-
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Figure 4. Performance of the SMART and the RANDOM multi-agent systems.

agent system, an experiment is run three times with different seed values. There are fifty trails for
each experiment, and each trail contains different initial starting locations of the agents. Therefore,
every point in the graph is an average of one hundred and fifty trails. Furthermore, every trial has a
simulation time limit of six hundred units.

The results overall show that SMART outperforms RANDOM. Agents in the RANDOM multi-
agent system delegate goals to a randomly selected agent, do not share flow-affected regions’ knowl-
edge with others, and always accept the delegated goals. However, following this approach, an agent
affected by flow delegates its goals to a random agent and makes it vulnerable to the flow-affected
region as it does not share its knowledge with the random agent. For this reason, the RANDOM
multi-agent system can only achieve forty percent of its goals even if it has enough time to achieve
its goals.

Similarly, if an agent in the SMART multi-agent system is affected by the flow, it delegates its
goals to an agent with minimum planning cost, shares the affected region’s knowledge, and decides
to achieve or reject the goal. For this specific reason, the receiving agents will be aware of the flow
affected region and completely avoids it. For these specific reasons, the SMART multi-agent system
can perform around eighty percent of goals within 450 units of time. Furthermore, given unlimited
time, the SMART agent cannot achieve a hundred percent of goals because of our experimental
settings. For example, the agents can never survey the two flow-affected regions. Moreover, since
the agents’ initial starting positions are random, two or more agents start in a flow-affected region.

The IDEAL multi-agent system is devoid of discrepancies (Flow and Remora attacks). Its agents
can all achieve their respective goals in a span of three hundred and forty units of time without the

9



V. GOGINENI, S. KONDRAKUNTA, M. COX

need for delegation. Since ideal environmental conditions do not commonly exist in the real world,
our multi-agent system performs well.

8. Related research

There are three different classifications of systems in which multiple autonomous agents work to-
gether. (Szymak, 2011). They are: centralized, decentralized and hybrid. Centralized multi-agent
systems (Levesque et al., 1990) represent a central architecture between agents, which implies that
the agents are assumed to be cooperative and kind during the problem solving process. In contrast,
decentralized multi-agent systems represent (Wooldridge & Jennings, 1999) autonomous control of
agents, which are assumed to be independent, cooperative or competitive, depending on the situation
they experience. Hybrid multi-agent systems represent agents following a combination of both de-
centralized and multi-agent systems. We are more interested in decentralized multi-agent systems,
as they allow other agents to be added to the system easily. For the purpose of this discussion, when
we refer to multi-agent systems we are exclusively referencing decentralized systems. Wooldridge
and Jennings Wooldridge & Jennings (1999) presents a formalized approach for multi-agent sys-
tems to pursue goals in a Cooperative Problem-Solving (CPS) Process. To recognize and achieve a
multi-agent problem, this approach follows a four-step process. Namely: Recognition, to recognize
if an agent cannot solve a problem individually; Team formation, to select a group of agents that can
be expected to solve the problem; Plan formation, to come up with a plan that is agreed between the
agents to solve the problem (involves negotiation for agreement between agents); and Team action,
to perform the actions by the agents. However, multi-agent coordination remains a central problem
in steps following Recognition.

Goal-driven autonomy and goal reasoning more generally are relatively new areas of research
compared to many technical areas of AI, but they are active in the cognitive systems community.
Cox (2007) was motivated to find the reason behind the origin of goals. This paper was implemented
in the Wumpus world domain. The goal of the agent is to reach a destination while avoiding the pits
in the world. Later on, the concept of GDA was incorporated into a cognitive architecture called
MIDCA (Paisner et al., 2013) and later on the work was extended (Paisner et al., 2014) into arsonist
domain. Goal management has been a key focus of goal reasoning research, hence GDA allows
the agent to dynamically perform certain goal operations: selection, monitoring, transformation,
formulation and several others. Kondrakunta (2017); Kondrakunta & Cox (In Press) presents a goal
selection strategy to look at the cost-benefit ratio during goal selection. This work closely aligns
with one of our goal selection strategies applied in our work.

Similarly Dannenhauer et al. (2019) introduced the idea of goal monitors. An agent creates
rules as preconditions to monitor goals. If the preconditions are satisfied then the agent switches
its goal or drops the goal. This paper did not consider the problem of selecting goals when there
are multiple goals to achieve. Moreover, the preconditions are mostly rule based rather than any
kind of functional estimation, which is often a problem when the agent has very limited resources
at hand. Kondrakunta (2017) also presents an initial implementation of goal change using predicate
transformations. The authors presented the idea to implement other goal operations like change
and formulation. A formalism of how to implement the two operations was outlined in the paper.
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Although we leverage the implementation of goal operations from the above mentioned works,
our prime focus in this paper is to address goal delegation. GDA is also implemented in a other
architectures, one such cognitive architecture is ARTUE (Klenk et al., 2013), which presents the
performance variation of the ARTUE architecture with both benefits and limitations.

Theory of mind is an ability of an agent to infer other agents’ goals, beliefs, emotions and inten-
tions. There are mainly two broad theories which are widely accepted from a psychological stand
point. Theory Theory (Gopnik & Wellman, 1994), states that children hold a naïve psychological
theory to infer goals, beliefs and emotions of others. This knowledge is used to predict behaviors
of others. Moreover, as children grow up they develop their psychological awareness to better in-
fer mental states of others. Simulation Theory of Empathy Goldman (1992), states that children
simulate the actions of others to predict the behavior of others. Furthermore, there are several hy-
brid theories that include a part of Theory Theory and Simulation Theory of Empathy, some of
which are Intentional stance and Structure-Mapping theory of analogy. Intentional stance (Burke
et al., 2001; Dennett, 1983) is a concept of theory of mind which states that an agent can predict
other agent’s beliefs and desires given the other agent’s purpose and place in the world. Structure-
Mapping theory (Gentner, 1983) (SMT) of analogy is a theory of analogy and similarity. SMT
focuses on humans’ ability to see structural similarities across dissimilar cases. From a computa-
tional standpoint, Rabkina et al. (2020) propose that an agent can better recognize goals of other
agents by externally observing their actions using an implementation of Analogical Theory of Mind.
This implementation involves retrieving mapped structures of internal knowledge about the observ-
able actions, thereby predicting the goal using the retrieved structures. The internal knowledge is
therefore trained.

9. Conclusions and Future Research

In this paper, we presented a distributed multi-agent system. The agents in the multi-agent system
work together when unexpected events happen. They follow a Theory of Mind approach to delegate
goals and share the required knowledge. This paper explicitly develops algorithms to approach goal
delegation, agent selection, knowledge sharing, and goal acceptance/rejection. These algorithms
improve the performance of a multi-agent system when uncertain events are bound to occur, which
is often the case in the real world. Furthermore, to support our claims of robustness and generality,
we introduced two discrepancies (i.e., Remora and Flow). The data supports our claims that a
multi-agent system following our approach outperforms a random multi-agent system in a dynamic
environment.

We intend to extend this research to include concepts of explanations, Usurpation, and goal
sharing. Explanations help the delegating agent to justify the reasons behind the delegated goals to
the selected agent. Such reasoning will help the selected agent understand the priority of the dele-
gated goals. Furthermore, in the case of a selected agent rejecting the delegated goals, explaining
the reasons behind the rejection will help improve the delegating agent’s agent selection process.

In this paper, we only talked about uncertain events that negatively affect agent’s resources.
However, real-world opportunities can occur, which positively affects the agent’s resources. In such

11



V. GOGINENI, S. KONDRAKUNTA, M. COX

a case, an agent that can quickly achieve its goals can also ask to achieve other agents’ goals, thereby
improving the multi-agent system’s performance. Such a process is called Usurpation.

Moreover, in this paper, we assumed that an individual agent is capable enough to achieve its
own goals. However, in real-world often, an individual agent requires the help of several other
agents to perform a given goal. Such a process is called goal sharing. We want to introduce goal
sharing to our approach by leveraging the concept of Hierarchical goal networks (HGN). HGN’s
can split a high-level goal into several sub-goals to share with capable agents. Such goal sharing
could further improve the performance of the multi-agent system.
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